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ABSTRACT 
The adaptive beamforming formula gives the source power estimate as the reciprocal of 

an expression similar to the classical frequency domain beamforming formula with the 
cross spectral matrix (CSM) replaced by an inverse of the CSM. The adaptive formula, also 
known as Capon and by other names, offers superior resolution, though it can be unstable. 
The original derivation relies on minimizing the beamformer output power with unity gain 
in the look direction. Another derivation in the literature is based on maximizing a rank-1 
matrix to be subtracted from the cross spectral matrix while keeping the residual non-
negative. A third derivation, introduced here, requires only an appropriate statement of the 
beamforming problem leading to system of linear equations that determines the 
narrowband source time history. The new derivation may be simpler and more general the 
previous formulations. 

1 INTRODUCTION 
Passive beamforming is an array signal processing technique that takes as inputs the signals 
measured by an array of transducers along with one or more steering vectors. A steering vector 
defines the amplitude and the propagation delay or, in the frequency domain, the propagation 
phase between the presumed source and each transducer. The beamforming algorithm attempts 
to compute the source power and/or the source time history to account for the portion of the 
signal data that can be attributed to the source corresponding to the steering vector.  

The simplest beamforming algorithm in the frequency domain is known as Bartlett 
beamforming or Frequency Domain Beamforming (FDBF). It suffers from poor resolution at 
low frequency and high sidelobes.  

Several algorithms have been developed to give better results than FDBF. Some operate with 
one steering vector at time, like FDBF, and others combine the results of beamforming with a 
grid of steering vectors in a deconvolution procedure to improve the results by a sort of voting. 
The usual assumption of beamforming is that if there is more than one source contributing to 
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the data, the various sources are mutually incoherent. Inverse methods attempt to treat multiple 
coherent or partially coherent sources.  

Some beamforming methods offer superresolution, meaning they can resolve multiple 
sources that are separated by less than the central beamwidth of the array using FDBF. The 
DAMAS and HR-CLEAN-SC deconvolution methods [1,2] have this ability, as do MUSIC [3] 
and Adaptive Beamforming. 

Adaptive Beamforming (AB) is a superresolution method that also known as Capon, 
Maximum Likelihood, and Minimum Variance among other names [4]. It is usually derived in 
the literature by applying the method of Lagrange multipliers to solve the constrained 
optimization problem of finding an array weight vector to minimize the beamformer output 
while maintaining unity gain in the look direction given by the steering vector. The name 
reflects that fact that the resulting weight vector depends on the array data.  

An alternate derivation AB is to find the largest source strength such that a rank-1 model of 
the Cross Spectral Matrix (CSM) constructed using a given  steering vector can be subtracted 
from the data CSM giving a result that is still non-negative definite [5]. This derivation can be 
viewed as an example of “covariance matrix fitting” [6]. 

Another route to the AB beamforming source power formula, less a derivation than an 
ansatz, is to set 𝜈 = −1 in the Functional Beamforming formula [7]. 

With an accurate steering vector, the resolution and dynamic range of AB are dramatically 
better than FDBF. See Fig. 1 for an example plot. It is also lacks the disadvantage of rendering 
continuous incoherent source distributions of isolated spots as deconvolution methods 
sometimes do. The computation times for the methods discussed here are not significantly 
different from FDBF unless the array has hundreds of microphones, in which case the time for 
the required eigenvalue decomposition of the array CSM can become important. 

The high resolution of AB can also cause difficulties. Errors in the computed steering vector 
can mean that sources are partially or completely missed. Variations on AB that resist this 
problem are called Robust Adaptive Beamforming. Two approaches include diagonal loading 
[8,9] and uncertainty sets [5,6]. 

The intention here is to present a derivation of AD that approaches it from that point of view 
of fitting a conjugate of a source time history to the narrowband array data. This provides a new 
way of understanding the method which may broaden and simplify its application. The case of 
multiple coherent or partially coherent signals is treated using the formulation as an example. 
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Fig. 1. Sample Point Spread Function using Frequency  Domain Beamforming (FDBF) and Adaptive 
Beamforming (AB). 40 element 2D array, 30 cm aperture, 8 kHz. 

1.1 Problem and FDBF 
Consider a phased array with 𝑁 microphones or other transducers that has been used to measure 
𝑇 frequency-domain snapshots of the narrowband acoustic pressure, giving a complex 𝑁 × 𝑇 
data matrix, 𝑷. The idealized picture of the beamforming problem is that there are 𝑀 acoustic 
sources, all of which are mutually incoherent. Each source has an 𝑁 × 1 array steering vector, 
𝒈+, 𝑗 = 1, … ,𝑀. These steering vectors are assumed to be normalized to unity, and are not 
required to be mutually orthogonal. Over the 𝑇 snapshots in time, each source has a 𝑇 × 1 
conjugate time history, 𝒒+, 𝑗 = 1,… ,𝑀. The source-receiver model is  
 

𝑷 =1𝒈+𝒒+2
3

+45

																																																																					 (1) 

 
where ′ is the Hermitian conjugate. This model can include spherical wave sources, directive 
sources, and even microphone self-noise by using a 𝒈+ that is non-zero at only one microphone. 
The elements of the row vectors 𝒒+2  are understood as samples of stationary, statistical, random 
processes representing the sources. The column vectors 𝒒+, the conjugates of the 𝒒+2 , are 
important in the analysis. The steering vectors 𝒈+ are constant and are determined by the source 
locations and other fixed characteristics, as well as source-receiver propagation paths and the 
transducers. 

The average powers of sources are defined by 
 

𝑠+ =
1
𝑇 𝒒+

2 𝒒+,			𝑗 = 1, … ,𝑀																																																					(2) 
 

20

30

40

50

60

70

80

90

100

110

-25 -15 -5 5 15 25

Be
am

fo
rm

in
g 

SP
L E

st
im

at
e,

 d
B 

Horizontal Angle From Array Axis, degrees

AB
FDBF
Source



7th Berlin Beamforming Conference 2018    Dougherty 

 
 

4 
 

The mutual incoherence of the sources assumed in this case means that 𝒒<2 𝒒+ = 0 if 𝑘 ≠ 𝑗.  
 
The sample estimate of the cross spectral matrix (CSM) C is given by 
 

𝑪 =
1
𝑇𝑷𝑷

2.																																																																					(3) 
 
Combing Eqs. (1-3) gives 

 

𝑪 =1𝑠+𝒈+𝒈+2
3

+45

.																																																																	 (4) 

 
The beamforming problem for the source power is to use a measured CSM, 𝑪, and a given 

steering vector, 𝒈, which may or may not be one of the true steering vectors, 𝒈+, to produce an 
estimate of the corresponding source strength, 𝑏. If 𝒈 = 𝒈+, then is it hoped that 𝑏 ≈ 𝑠+.	A 
straightforward least-squares fit of 𝑏𝒈𝒈2to Eq. (4) gives the FDBF estimate 

 
𝑏 = 𝒈2𝑪𝒈.																																																																						(5) 

 
A secondary problem is to estimate the source time history, 𝒒 to go with 𝒈 by processing 𝑷. 

Performing a snapshot by snapshot least-squares fit to estimate each of the 𝑇	elements of 𝒒 
from the corresponding time slices of 𝑷 gives 
 

𝒒2 ≈ 𝒈2𝑷.																																																																							(6) 
 

Incidentally, substituting Eq. (6) into Eq. (2) gives an alternate derivation of Eq. (5).  

2 IMPROVED FORMULA 

2.1 Specific problem statement 
Suppose the narrowband time history 	𝑷 and a specific steering vector, 𝒈, are given and the 

goal is to determine the corresponding conjugate time series, 𝒒. The expression	𝒈𝒒2 is intended 
as a model to explain part of 𝑷. In particular, the goal is to find a 𝒒 to approximately solve 

 
𝑷 = 	𝒈𝒒2 + 𝑬,																																																																		(7) 

 
where ‖𝒒‖	is maximized and ‖𝑬𝒒‖	is small. Maximizing ‖𝒒‖ maximizes the amount of 𝑷 that 
𝒈𝒒2explains. Minimizing ‖𝑬𝒒‖ means that the time history of the residual, 	
𝑷 − 	𝒈𝒒2, is approximately incoherent with 𝒒. This is consistent with the idea that residual is 
associated with sources that are different from, incoherent with,  the source that is described by 
𝒈 and 𝒒. 

To demonstrate the feasibility of second part of the goal, suppose that Eq. (1) holds and that 
𝒈 happens to be an exact steering vector 𝒈< so that  
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𝑷 =	𝒈<𝒒2 +1𝒈+𝒒+2
+K<

.																																																								 (8) 

 
Choosing 𝒒 = 𝒒< gives 𝑬 = ∑ 𝒈+𝒒+2+K< .	Then the source time history orthogonality gives 

‖𝑬𝒒‖ = 0. This result does not require orthogonality of any steering vectors, only that Eq. (1) 
holds and 𝒈 is well constructed so that 𝒈 ∈ O𝒈+P. 

2.2 Finding the conjugate source time history 
Multiplying Eq. (7) on the right by 𝒒 gives  

 
𝑷𝒒 = 	𝒈𝑠𝑇 + 			𝑬𝒒,																																																													(9) 

 
where the average source strength 𝑠 is defined by 𝒒2𝒒 = 𝑠𝑇. Dividing both sides by 𝑠𝑇 gives 

 

𝑷𝒙 = 	𝒈			 +			
𝑬𝒒
‖𝒒‖S 	,																																																										(10) 

 
where 

𝒙 =
𝒒
𝑠𝑇.																																																																						(11) 

 
Since the problem is to maximize ‖𝒒‖ and minimize ‖𝑬𝒒‖, a good place to start is to find a 

least-squares solution, 𝒙T , to 𝑷𝒙 = 	𝒈	. This minimizes the square error ‖𝑷𝒙 − 	𝒈‖S = ‖𝑬𝒒‖U

‖𝒒‖V
.  

If 𝑇 > 𝑁, then the 𝑁 × 𝑇 system of linear equations 𝑷𝒙 = 	𝒈	is probably underdermined, so 
it has more than one least-squares solution. In this case, the one to choose is the least-squares 
solution of minimum norm. Minimizing the norm of 𝒙 over the subspace of least squares 
solutions has the desired result of maximizing ‖𝒒‖, since ‖𝒒‖ = 5

X‖𝒙‖
. 

Let the Moore-Penrose inverse of 𝑷 be denoted 𝑷Y. Using the SVD, it can be evaluated as  
𝑷Y = 	𝑽𝚺Y𝑼2.	The least-squares solution of minimum norm of 𝑷𝒙 = 	𝒈	is 𝒙T 	= 	𝑷Y𝒈. This 
gives the beamforming conjugate source time history to accompany 𝒈 as  
 

𝒒 = 	𝑠𝑇	𝒙T 				= 		𝑠𝑇𝑷Y𝒈.																																																						(12) 
 

2.3 Evaluating the source power 
Equation (12) does not fully define the source time history because 𝑠 appears explicitly on 

the RHS and implicitly on the LHS. To resolve this, note that  
 

𝒒2 = 𝑇𝑠𝒈2𝑷Y2.																																																																(13) 
 
Combining, 
 

𝑠 = 5
X
𝒒2𝒒 = 𝑠S𝑇𝒈2𝑷Y2𝑷Y𝒈																																																				(14)  
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Using the SVD of 𝑷 in Eq. (3) gives  

𝑪 =
1
𝑇 𝑼𝚺𝚺

2𝑼2.																																																																(15) 
 
The Moore-Penrose inverse of 𝐂 is therefore 
 

𝑪Y = 𝑇𝑼(𝚺𝚺2)Y𝑼2 = 𝑇𝑷Y2𝑷Y.																																																		(16) 
 
Using this in Eq. (13) gives 
 

𝑠 = 	 𝑠S𝒈2	𝑪Y𝒈.																																																																(17) 
 
Solving for 𝑠: 
 

𝑠 =
1

𝒈2	𝑪Y𝒈	.																																																																		(18) 

 
This is recognized as the adaptive beamforming formula [1]. This also completes the 

determination of 𝒒.  
 

2.4 Revisiting the time history 
Combining Eqs. (13) and (18) gives 

𝒒2 =
𝑇

𝒈2	𝑪Y𝒈𝒈
2𝑷Y2	.																																																					(19) 

 
Equation (16) and two properties of the Moore-Penrose inverse,  𝑷Y𝑷𝑷Y = 𝑷Y 

and (𝑷Y𝑷)2 = 𝑷Y𝑷, can be used to derive the useful formula 
 

 𝑷Y2 = 5
X
𝑪Y𝑷.																																																																(20) 

Substituting this into Eq. (19) gives 
 

𝒒2 =
𝒈′𝑪Y

𝒈2	𝑪Y𝒈𝑷 = 𝒉2𝑷,																																																				(21) 

 
where  
 

𝒉 =	
𝑪Y𝒈
𝒈2	𝑪Y𝒈	.																																																																	(22) 

 
This is analogous to Eq. 6, except that 𝒈 is replaced by 𝒉, the familiar weight vector in 

adaptive beamforming. In this form, it is seen that the method can be applied to determine 𝒒 
and 𝑠 without actually taking the SVD of 𝑷. The only decomposition necessary is the spectral 
decomposition of 𝐂, which is used to compute 𝐂Y.  



7th Berlin Beamforming Conference 2018    Dougherty 

 
 

7 
 

In retrospect, Eq. (6) (FDBF) can be derived from Eq. (7) by multiplying both sides on the 
left by 𝒈′ and assuming that the columns of 𝑬 are perpendicular to 𝒈. The adaptive method is 
derived by multiplying both sides on the right by (as yet unknown) 𝒒 and assuming that the 
rows of 𝑬 are perpendicular to 𝒒. The difference is that the adaptive assumption has a good 
chance of being true, whereas the FDBF assumption is unlikely. The two outcomes are 
compared in in the power sense Fig. 1.  

3 MATRIX GENERALIZATION 

3.1 Setup 
The standard beamforming approach is to determine the steering vectors for the mutually 
incoherent sources a priori and fit the data to the steering vectors. In some cases, a source is 
expected to excite several steering vectors with relative contributions and partial coherence that 
cannot be predicted in advance. Suppose, for example, that an aeroacoustic source at a given 
location can radiate in three dipole modes. The dipoles should be coherent because they 
originate from a single source location that is associated with a single, random, pattern of 
turbulent flow. There are other sources at other locations that are incoherent with the source of 
interest. Equation (7) is then generalized to  

 
𝑷 = 	𝒈5𝒒52 + 𝒈S𝒒S2 + 𝒈_𝒒_2 + 𝑬																																																			(23) 

 
where 𝒈5 is the known array steering vector for a dipole at the location or interest, oriented in 
the x-direction, and so on for the y- and z-directions. The time history functions 𝒒52  , 𝒒S2 , and 𝒒_2  
are partially or fully coherent with each other, but incoherent with the other sources represented 
by 𝑬.  

Monopoles and quadrupoles may be important, in addition to dipoles. In another application, 
different parts of a vibrating structure may radiate waves with known patterns, and the parts are 
different acoustic sources, but are correlated because they are all driven by the structure. 
Multipath can give rise to coherent sources. In a different field, electromagnetic antenna sources 
can have two correlated polarizations. Generalizing the number of partially coherent sources 
from 3 to 𝐿 and placing 𝒈5, … ,𝒈aon the columns of an 𝑁 × 𝐿 matrix, 𝑮, and 𝒒5,… , 𝒒a on the 
columns of a 𝑇 × 𝐿 matrix, 𝑸, the expanded version of Eq. (7) becomes 

 
𝑷 = 	𝑮𝑸2 + 𝑬																																																																				(24) 

 
where, again, 𝑷 is the 𝑁 × 𝑇 matrix of array data snapshots and the intention is to find sources   
𝑸 that are consistent with 𝑮 and incoherent with the sources in  𝑬. 
 

3.2 Matrix solution 
 
Multiplying Eq. (24) on the right by 𝑸 gives 
 

𝑷𝑸 = 	𝑮𝑺𝑇 + 𝑬𝑸																																																																(25) 
 
where 𝑺 is the 𝐿 × 𝐿 cross spectral matrix of the 𝐿 sources,  
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𝑺 = 	
1
𝑇𝑸

2𝑸																																																																						(26) 
 
Multiplying Eq. (25) on the right by 𝑺e5 and introducing  
 

𝑿 = 	
1
𝑇𝑸𝑺

e5																																																																					(27) 
 
causes Eq. (25) to become 
 

𝑷𝑿 = 	𝑮 + 𝑬𝑸	(𝑸2𝑸)e5.																																																										(28) 
 
 
Following the pattern for the single-𝒈 case above, the least-squares solution of minimum norm 
to 𝑷𝑿 = 	𝑮 is computed as 
  

𝑿T 	= 	𝑷Y𝑮																																																																									(29) 
   
and 
 

𝑸 = 	𝑇𝑿T𝑺				 = 		𝑇𝑷Y𝑮𝑺.																																																											(30) 
 
 

Combining Eqs. (16), (26) and (30) and using the fact that 𝑺 is Hermitian gives 𝑺 =
𝑺𝑮2𝐂Y𝑮𝑺. The generalization of Eq. (18) then becomes 
 

𝑺 = (𝑮2𝐂Y𝑮)e5.																																																														(31) 
 

This is analogous to the FSBF version 𝑺ghig = 𝑮2𝐶𝑮, but expected to have much higher 
resolution. 

To finalize the matrix source time history, Eq. (31) is substituted into Eq. (30) and Eq. (20) 
is used again, giving 
 

𝑸2 = 𝑯2𝑷,																																																																					(32) 
 
where 
 

𝑯 =		𝐂Y𝑮(𝑮2𝐂Y𝑮)e5																																																							(33) 
 
 
is the matrix generalization of the adaptive beamforming weight vector. 

4 IMPLEMENTATION DETAILS 
At several points, the methods depends on computing 𝑪Y𝒈.	In the notation used for the SVD 

of  𝑷, 
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𝑪 = 𝑇𝑼𝚺𝚺2𝑼2 = 𝑇𝑼diag(𝜆5,… , 𝜆q)𝑼2,																																												(34) 
 

where the 𝜆r = 𝜎rS, 𝑖 = 1,… , 𝑁. Hence 
 

𝑪Y =
1
𝑇 𝑼

[diag(𝜆5,… , 𝜆q)]Y𝑼2.																																																				(35) 
 
In the pseudoinverse, [diag(𝜆5,… , 𝜆q)]Y is formed by taking the reciprocal of the nonzero 

𝜆r values and leaving the 0 values unchanged. For adaptive beamforming, it is not good to leave 
any zeros on the diagonal of the result, since that would invite zero results in the denominator 
of, for example, Eq. (18). One solution is to add a small, positive, diagonal matrix to 𝑪 before 
taking the spectral decomposition. Since 𝑪 is non-negative definite by construction, adding the 
positive matrix ensures  that none of the eigenvalues of the sum are 0. One disadvantage of this 
approach is that it changes all of the eigenvalues, including those that were accurate before they 
were changed.  

The pseudoinverse 𝑪Yoften has some very large eigenvalues, corresponding to the noise 
subspace in ℂq. If 𝒈 is in this subspace, then 𝒈2	𝑪Y𝒈 will be very large and the adaptive 
beamforming results will be very small. This gives the method its high resolution and dynamic 
range, but can also create serious problems if the none of the assumed steering vectors are in 
the signal subspace. The standard solution is diagonal loading: the diagonal matrix added to 𝑪 
before taking the generalized inverse is increased until the method begins to produce results 
[9]. Another approach is to optimize 𝒈 within a small region to maximize the output [5,6] 
 

5 SUMMARY 
A new derivation of Adaptive Beamforming is based on linear algebra to find the source time 
history, instead of constrained optimization to find the source power, 𝑠. The method is to model 
the time history as the sum of the source of interest, which depends on the known steering 
vector(s) of interest and the remaining sources, 𝑬, which are assumed to be incoherent with the 
source of interest.  

The model equation is used to derive a system of linear equations for a vector 𝒙. The matrix 
in the liner system is the array data matrix,  𝑷 and the right hand side is either the steering vector 
for the source of interest, 𝒈, or a matrix of these steering vectors.  The least-squares solution of 
minimum norm is found using the Moore-Penrose inverse of 𝑷. The new variable, 𝒙, is parallel 
to the conjugate source time history, but the norm of 𝒙 is the reciprocal of the norm of the 
source time history. Finding the  least squares solution 𝒙 for makes the final source time history 
approximately orthogonal to 𝑬. Minimizing the norm of 𝒙 maximizes to the norm of the source 
time history, which maximizes the extent to which the model accounts for 𝑷. The solution, 𝒙T, 
is used to find the source power and the source time history.  

The derivation does not explicitly rely on the concepts that are usually associated with AB: 
designing the weight vector to minimizing the beamformer output while maintaining unity gain 
in the look direction. It is also different from the AB derivation based on subtracting a rank-1 
matrix from the CSM while keeping the difference nonnegative. Instead, the new derivation 
seeks the source time history to conform with the steering vectors(s) and the array data using 
the criteria described.   
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Two passes through the methodology are given, one for scalar beamforming and one for 
coherent matrix beamforming. The new method is described as an AB derivation because it 
gives the AB formulas in the scalar case and plausible generalizations in the matrix case.  It is 
possible that many beamforming problems can be addressed with this formulation. 
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