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Abstract

The Helmholtz boundary element method (BEM) is a versatile tool to calculate the sound
field around scattering structures in 2D and 3D. For infinitely long structures with constant
cross-section the 2.5D approach can be used to increase the efficiency of the BEM when
solving problems in 3D. Furthermore, the 2.5D setting allows a straightforward treatment
of uniformly moving sources when the direction of motion is along the infinite dimension.

In this work, an inverse approach will be presented for the localization of uniformly
moving tonal sources. This approach is based on the 2.5D BEM and acts entirely in the
frequency domain. It allows for the presence of scattering objects in the sound propagation
path and, as it does not require cutting the microphone signal into short, quasi-stationary
segments, a high spectral resolution can be achieved. Furthermore, using the BEM also
allows for the treatment of different types of sources such as vibrating parts on a moving
scattering structure, point or incoherent line sources.

In this work, the general properties of the mapping between source and microphones,
that is inverted using a Tikhonov regularization, will be investigated. The feasibility of the
2.5D approach is demonstrated using simulated data.

1 INTRODUCTION

Microphone arrays are commonly used for detecting and localizing sound sources. By far the
most popular method of choice is beamforming and all its flavors (e.g. [16]).

For moving sources, the typical approach is to use a moving focus either applied purely in the
frequency domain [4] or, more commonly, at least partially (e.g.[6, 19]) or fully (e.g.[1]) in the
time domain. With the latter methods, the pressure caused by a moving source is formulated in
the time domain, thus, the Doppler shift can be taken into account in a relatively straightforward
manner. In contrast to the pure frequency domain approach in [4] that is based on “snapshots”
of the moving object, no assumptions about small displacements are necessary.
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While in conventional beamforming the strength of each source is determined independently,
inverse methods solve a joint optimization problem applying some sort of regularization for the
typically undetermined system, see e.g. [15, 20]. In addition to the free-field setting, numerical
methods such as the boundary element method (BEM) or the finite element method (FEM)
allow the inclusion of scattering structures or more complex source models (e.g. [5, 18]).

Recently, an inverse method based on a 2.5D approach for sound source localization of single-
frequency sources moving at a constant speed was presented in [13]. Although defined fully in
the frequency domain, this approach has the advantage that effects like the Doppler shift can
be included in the formulation in closed form. The 2.5D approach is based on the assumption
of a constant cross-section in the y-z plane. In contrast to pure 2D methods, 2.5D methods
allow for a varying soundfield along x which is achieved via a spatial Fourier transform of the
Helmholtz equation along x into the wavenumber domain. An inverse Fourier transform of
many 2D calculations for different 2D-wavenumbers is used to get back to the spatial domain
in x (see e.g., [2, 3, 10–12, 14, 17, 21]).

The approach presented in [13] operates fully in the frequency domain and compensates for
the spectral leakage of the discrete Fourier transform (DFT) which needs to be applied to the
measured microphone array data. It was validated using simulated scenarios in the free field and
with a reflecting ground present. In the present work, it will be demonstrated that using the 2.5D
BEM allows for more complex scenarios including velocity sources and scattering structures.
In the following, a brief overview of the general idea of the approach will be given (for details
please refer to [13]) and extensions with regard to the source model will be indicated. Simulated
data will be used to evaluate the approach.

2 METHODS

2.1 Uniformly moving sources

As a starting point, a source region containing L potential moving sources at positions xs,ℓ =(
xs,ℓ(t),ys,ℓ,zs,ℓ

)⊤
, ℓ= 1, . . . ,L and a microphone array with N microphones at positions xr,n =

(xr,n,yr,n,zr,n)
⊤ ,n = 1, . . . ,N, and typically N < L are defined. The argument t indicates, that

the source is moving along x. For the case of a source moving at a constant speed of vs, the
x-position is given as: xs,ℓ(t) = xs,ℓ + vst. The time-dependent pressure at the n-th receiver
position caused by a uniformly moving point source at the ℓ-th source position is given as (for
a derivation see e.g. [2])

pnℓ(t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

ŝℓ(ω − vskx)q̂ℓn

(√
ω2/c2 − k2

x

)
eikx(xr,n−xs,ℓ)e−iωtdkxdω . (1)

ŝℓ(ω − vskx) is the temporal Fourier transform of the source signal sℓ(t) evaluated at ω − vskx,
q̂nℓ(·) is the 2D BE solution for the ℓ-th source at the n-th receiver at the 2D wavenumber
k2 =

√
ω2/c2 − k2

x . Being a 2D solution, q̂nℓ(·) only depends on the scatterer’s cross-section
and the source positions in the y-z-plane and is independent of x.

Eq. (1), which was used in [13], can immediately be extended to sources modeled by veloc-
ity/pressure boundary conditions, however, Eq. (1) implicitly assumes that along x the sources
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are given by s(t)δ (x− vst), thus they are point-like, i.e. infinitely short. More general, sources
can be point sources (omnidirectional, dipoles but also higher moments) as well as moving pres-
sure or velocity boundary conditions. The latter are defined on one or more boundary elements
of the 2D-mesh of the cross-section of the scatterer in the y-z-plane. Irrespective of the type,
sources extending in x can also be treated in a straightforward manner in the 2.5D framework
as long as the spatial Fourier transform of the source strength along x exists. Details for the
stationary case and velocity boundary conditions can be seen in [14], where the radiation of
a rail on a railway track is modeled using the 2.5D BEM. Following the derivation for Eq. 1
as given in [2] and defining a more general type of source s(t)u(x− vst) leads to the transfer
function from a source at xs,ℓ to the sound pressure at xr,n

pnℓ(t) =
1

(2π)2

∞∫
−∞

∞∫
−∞

ŝℓ(ω − vskx)ûℓ(kx)q̂nℓ

(√
ω2/c2 − k2

x

)
eikx(xr,n−xs,ℓ)e−iωtdkxdω, (2)

which now includes a weighting according to the Fourier transform of the x-dependency of the
source, ûℓ(kx).

In a real scenario, the measured sound pressure at the receiver positions is sampled and a
discrete Fourier transform (DFT) is used to transform the time signals to the frequency domain.
Usually, a time window (e.g. a Hann window) is applied beforehand to reduce the spectral
leakage between adjacent frequency bins in the DFT spectrum. In [13] it was shown that the
effects caused by this windowed DFT can be included in the 2.5D forward calculation through
a convolution with the temporal Fourier transform of the time window g:

p̂nℓ[ω
′
m] =

1
(2π)2

∞∫
−∞

∞∫
−∞

ŝℓ(ω − vskx)ûℓ(kx)q̂nℓ

(√
ω2/c2 − k2

x

)
ĝ(ω ′

m −ω)eikx(xr,n−xs,ℓ)dkxdω.

(3)

p̂nℓ[ω
′
m] denotes the DFT of the sampled version of pnℓ(t) subject to a data window g evaluated

at ω ′
m. The brackets denote the discrete nature of the frequency representation.

To simplify Eq. (3), a harmonic ansatz for ŝℓ is used [5]:

sℓ(t) =
J

∑
j=1

aℓ je−iω jt , (4)

with frequencies ω j = 2π f j and corresponding constant complex amplitudes aℓ j. In contrast to
the stationary case, where each frequency f j can be treated separately, the spectral broadening of
the measured data due to the Doppler effect for moving sources may lead to overlapping spectra
requiring a joint treatment of the harmonic components. To reduce the computational burden
for the data presented in this manusscript, only single-frequency sources will be assumed with
frequency ω0 = 2π f0 and thus ŝℓ(ω) = aℓ2πδ (ω −ω0). Applying the spectrum to Eq. (3) to
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and performing the integral over ω leads to

p̂nℓ[ω
′
m] =

aℓ
2π

∞∫
−∞

ûℓ(kx)q̂nℓ

(√
(vskx +ω0)2/c2 − k2

x

)
ĝ(ω ′

m − vskx −ω0)eikx(xr,n−xs,ℓ)dkx

:= hnℓ[ω
′
m]aℓ. (5)

hnℓ[ω
′
m] represents the transfer function from the ℓ-th single-frequency source to the n-th re-

ceiver evaluated at a discrete frequency ω ′
m = 2π f ′m. Note that this expression is different from

[13] where the kx-integral was evaluated. The change was done here as the remaining kx-integral
is more closely related to the standard formulation of the 2.5D method as used in [2, 12].

2.2 Source localization

The details about the inversion procedure are provided in [13]. Briefly, the transfer functions
hnℓ are evaluated at specific frequencies ω ′

m to be chosen beforehand. The choice of these
frequencies is a critical parameter for the method. It was shown that a random selection of M > 1
different frequencies per microphone out of a defined spectral range [ω−,ω+] leads to good
localization performance. Thus, for each of the N microphones a different set of frequencies is
used. The spectral range to choose from depends mainly on the Doppler effect and thus on the
source speed. Defining a set Ωn of M random frequencies per microphone, the L2-regularized
inversion can be written as:

min
a∈CL

N

∑
n=1

∥∥∥∥∥p̃n[Ωn]−
L

∑
ℓ=1

aℓhnℓ[Ωn]

∥∥∥∥∥
2

2

+λ

L

∑
ℓ=1

|aℓ|2 , (6)

where a = (a1, . . . ,aL)
⊤ is the source weight vector and p̃n[Ωn] is a vector of dimension M

containing data of the n-th microphone according to the frequencies defined in the respective
set Ωn. Similarly, hnℓ is a vector of transfer functions hnℓ evaluated at the frequencies contained
in Ωn. In practice, the vectors hnℓ for all n and ℓ are combined into a single transfer matrix H of
dimension (N ·M)×L. The L2-regularization (also kown as Tikhonov regularization) was used
to illustrate the potential resolution that can be achieved without resorting to sparse approaches
or deconvolution methods. The regularization factor λ is determined via an L-curve approach
[9] as implemented in the MATLAB library Regularization Tools [8].

3 RESULTS

To evaluate the inverse BEM approach, a scenario including a source object O1 and a barrier-
like object O2 were defined (blue lines in Fig. 1). Here, no half plane was included allowing
for diffraction around the top and the bottom of O2. However, including a reflective ground to
model, e.g., the efficiency of noise barriers, is straightforward. A microphone array (black dots)
was placed 4 m away from the source plane. 63 receiver positions were arranged on a square
of 1 by 1 m in an irregular pattern using a Halton sequence [7]. The potential source region
for the localization task was defined using a rectangular planar mesh extending 4 m in x and
1 m in the z-direction and comprised 40×20 elements of dimension 0.1 m×0.05 m. Note that
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Figure 1: Simulation setting. Blue lines show the outlines of the infinitely long structures O1
(dashed) and O2 (dash-dotted). The black lines show the source grid used for the
localization located on O1. Note that for clarity only groups of four surface elements
are shown. The sources for the simulated data are also located on O1 and delineated
by a green (S1) and a red (S2) rectangle. Black dots show the microphone positions.

in Fig. 1 only every other element is shown to avoid cluttering. The source plane is assumed
to move with a velocity vg = 50 m/s in the x direction and the sources are defined to have a
frequency of f0 = 1 kHz. Please note, that the assumption of a source plane was made to reduce
the computational effort. The 2.5D BEM approach would also allow for sources with different
y positions covering, e.g., the full circumference of O1. Two moving source regions S1 and
S2 on the object O1 were used as indicated by the colored filled rectangular regions within
the source grid. The length of the sources was set to 0.9 m centered around x = 0 m. The
intensity was set equal along the whole length. Two signals were generated for each source
position comprising either O1 only or O1 and O2. Furthermore, these two scenarios were used
to calculate two transfer matrices from the source region to the array: O1 only or O1 and O2.
This led to three meaningful test conditions: two matched conditions, i.e. artificially generated
microphone signal and the transfer matrix both are defined with O1 only (case 1) or O1 and O2
(case 2), and a mismatched condition, i.e. the measurement signal was generated with O1 and
O2 present but the transfer matrix calculated for the case where only O1 is present was used
(case 3). The remaining case with a barrier considered in the transfer matrix but not in the
signal generation was not considered as it does not seem to be meaningful in practice. A Hann
window of length Tg = 1 s was used in the analysis.

Fig. 2 shows the results for the inversion for all tested conditions. In the left column the
higher source position S1 was used. As can be seen, in the matched conditions the inversion
leads to results that closely resemble the true source up to a the blurring due to the use of an L2-
regularization and a tendency to a slightly elevated source position in case 2. In the mismatched
condition, clearly the source map does not identify the true source region but two regions are
identified with the stronger region being clearly displaced vertically. Similarly, for the lower
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Figure 2: Localization results. Panels show the results of the inversion for different settings.
Columns denote different source positions as indicated by the white rectangles. The
upper row shows the case where only O1 was present, in the middle row O1 and O2
were present and included in the calculation of the transfer matrix. The lower row
shows the case when O1 and O2 were used to generate the data, but only O1 was
used in the transfer matrix. The dynamic range was set to 20 dB and the peak was
normalized to 0 dB.

source position (S2, red rectangle in Fig. 1) the matched condition leads to a good agreement
between the true position and the source map whereas the mismatched condition does not yield
a satisfying result.

4 SUMMARY

Recently a method using a 2.5D approach was developed and validated on moving point sources
[13]. In this work, the approach was applied to situations where the 2.5D boundary element
method is required. As shown, the inverse 2.5D BEM has a high potential for moving source
localization in a complex acoustic setting, enabling the localization of sources which may be
shielded. The results of the mismatched condition for signal and transfer matrix also indicate
the importance of including scattering structures in the forward problem.

Clearly, there are currently many restrictions. First, using only a single-frequency setting is
not very realistic and the extension to more complex stimuli where the harmonic components
result in overlapping bands is a matter of current and future work. In order for this extension
to be feasible, the efficiency of this computationally costly method is also of major concern.
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Furthermore, the inclusion of deconvolution approaches and the use of sparsness-enforcing
regularization will be considered in the future.

5 ACKNOWLEDGEMENTS

This work was supported by the Austrian Science Fund (FWF) via the DACH project LION
(Localization and Identification of moving noise sources, I 4299-N32). The authors would like
to thank Nicki Holighaus for providing the programming code for the Halton sequence.

REFERENCES

[1] R. Cousson, Q. Leclère, M. A. Pallas, and M. Bérengier. “A time domain CLEAN ap-
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