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ABSTRACT 

The need for advanced noise source localization technologies in noisy and confined 

workplaces has grown due to the rising instances of noise-induced deafness cases among 

industrial workers. This project delineates the hardware design and software 

implementation of a portable, GPU-based 3D acoustic camera to identify and characterize 

noise sources within enclosed work environments.   

The proposed solution combines a spherical microphone array (64 MEMS digital 

microphones) and state-of-the-art signal processing techniques on a portable GPU 

platform. Overcoming the challenge of high microphone count and spacing is achieved 

through time-division multiplexing (TDM) and a modified Integrated Interchip Sound (I2S) 

protocol, extending the classical 50 mm limit between adjacent microphones by up to  

400 mm.  

This method allows a simplified implementation of a cost-effective extended 3D arrays, 

as well as an easy integration within the existing portable GPU platforms available on the 

market. Initial validation on a 315 mm radius open sphere, combined with a 360-degree 

depth camera, achieves a 30 Hz refresh rate over a 150,000-pixel grid. The system's precise 

noise source localization and real-time imaging represent significant advancements in 

workplace noise assessment, ultimately contributing to the prevention of noise-induced 

hearing loss.
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1 INTRODUCTION  

In Québec (Canada), 86% of occupational disease claims in 2021 are linked to hearing-related 

issues [1]. Yearly, around 300 000 manual workers are exposed to harmful noise levels [2]. 

Québec modified its regulations to mitigate continuous noise exposure, aligning its legal 

standards with those of other provinces. However, the most effective approach to reducing noise 

levels is by addressing them at their source. It is then essential to be able to identify and locate 

spatially the sources contributing to workplace noise. 

Acoustic antenna arrays offer a promising approach to identifying and classifying sound 

sources [3]. These arrays capture spatial information through multiple microphones arranged in 

different shapes like a sphere, providing a comprehensive overview of surrounding sources in 

a single measurement [4, 5, 6, 7]. Coupling such arrays with a depth camera gives access to the 

source position by obtaining the distance information of each pixel—this combination is 

referred to as an acoustic camera [8, 9]. This has been done multiple times, but mainly with 2D 

cameras due to the complexity and cost of obtaining a 3D depth sensor [10]. 

Existing commercial acoustic cameras lack accessible and affordable real-time imaging 

possibilities with integrated processing systems, a solution essential for industrial applications. 

This is attributed to both physical constraints and technical challenges, such as inter-

microphone distances (resulting from the limitations of the I2S interface when dealing with a 

large number of microphones) and the computational complexity of localization algorithms, as 

highlighted in [8]. Moreover, imaging industrial noise sources poses additional challenges, as 

industrial environments include many reflective surfaces which generate phantom sources, 

underscoring the necessity for precise distance estimation. 

The acoustic camera described in this paper aims to address those physical limitations by 

using time-division multiplexing (TDM) and a state-of-the-art mobile device with a graphical 

processing unit (GPU) for fast and accurate sound source localization [11, 12]. The system uses 

a 64 spherical digital MEMS microphone array and a 3D depth camera [13]. The result is a 

fully autonomous and modular “open” spherical antenna with a radius of 315 mm which can 

generate 3D acoustic images with a frame rate of 20 frames per second with a visually 

acceptable pixel grid size (150 528 pixels, 224 x 672 of width and height) and share the 

beamformed image through a low latency network protocol. 

The device comprises four principal modules: an audio acquisition module, which collects 

audio data at a rate between 32 and 48 kHz; a video acquisition module to obtain precise 

distance information; an imaging algorithm implemented on GPU; and a client/server user 

interface, to ease visualization of the acoustic image. The following section provides a 

comprehensive overview of those modules, with the calculations for determining the maximal 

distances between each MEMS microphone.  

 

2 METHODS 

2.1 Audio data acquisition 

Achieving a compact 315 mm antenna requires small microphones, a feature made feasible with 

the introduction of MEMS microphones. Digital MEMS offer an improved solution for portable 
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antennas, given their capability to transmit encoded digital data through established protocols 

like I2S [14].  

The I2S interface allows for the overlay of two digital audio signals using a high-speed clock. 

With a 64 MEMS microphones antenna, it requires 32 I2S ports, leading to increased complexity 

and costs. To address this issue, the time-division multiplexing (TDM) interface operates 

through the I2S bus, enabling the encoding of up to 16 audio channels over a single Serial Data 

line (SD). This is achieved using a Word Select signal (WS) alongside a high-frequency clock, 

determining which microphone can write its data without overlap. Each microphone triggers its 

Word Select Output (WSO) when finished writing, signalling the next microphone. This 

approach reduces the required number of I2S ports to 4 slots, significantly reducing costs for 

the antenna. Still, a custom circuit needs to encode the microphone signals in TDM, potentially 

with Field Programmable Gate Arrays (FPGAs) or dedicated Digital Signal Processing (DSP) 

codec, thereby increasing costs. 

Currently, the ICS-52000 from Invensense1 is the only digital MEMS microphone available 

with a 16-channel TDM interface without requiring a custom encoder [15]. According to its 

specifications, due to propagation delays and clock signal impedance, the maximum distance 

between microphones is limited to 50 mm. Daisy-chaining 16 x ICS-52000 units within this 

inter-microphone distance is hardly feasible for a 315 mm diameter spherical microphone array. 

To address this limitation, organizing the microphones in a parallel configuration could reduce 

the distance between the furthest microphone and the computer. However, this necessitates 

synchronizing the signals to prevent simultaneous writing.  

Figure 1 illustrates theoretical calculations for signal propagation delay in both the standard 

daisy-chain configuration and a 4x4 parallel configuration chosen for the antenna described in 

this paper. This configuration adds a D-type flip-flop in-between delaying the signal one bit 

permitting to remove the delays caused by the left-side loop in Fig. 1 (b). This is adjusted in the 

acquisition driver of the on-board computer, effectively modifying the I2S protocol. Assuming 

a signal speed of 0.57c, where c is the speed of light, the maximum length for each branch of 4 

microphones in the 4×4 configuration is approximately 1800 mm. Therefore, with a safety 

factor of 10% considered, it is reasonable to expect the ICS-52000 to function effectively with 

an inter-microphone distance of up to 400 mm.  

 
1 Note: the optical MEMS microphone SMB100 from sensiBel also offers TDM but is limited to 8 channels 
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2.2 Video data acquisition 

The focusing distance for beamforming must correspond to the source-array distance, requiring 

this distance to be measured. Applying a focusing distance adapted to the actual source-array 

distance reduces the distortion of the acoustic image [9] and allows weighting of near-field 

sources. As mentioned earlier, the distance estimation requires a 3D depth camera, which is 

now readily accessible with various available options. 

     Companies such as StereoStitch, Vuze, and DreamVu offer ready-made solutions for 

capturing 360-degree depth images. StereoStitch provides software that merges images from 

multiple cameras to produce real-time stereoscopic videos. Vuze (and many others) offer a 

compact 360-degree camera capable of capturing 3D and high-resolution videos, although it 

appears to lack real-time functionality. In contrast, DreamVu offers the PAL camera, which 

utilizes mirrors to generate a real-time stereoscopic 360-degree depth image using only one 

camera. Connected through a USB cable for data transfer, this camera relies on the GPU of the 

Fig. 1. Maximal delay for signal to reach an ICS-52000 microphone in (a) 16 daisy-chain 

configuration and (b) with a synchronisation flip-flop for a 4x4 configuration with a frequency of 48 

kHz and each numeric data encoded on 32 bits. 

(a) 

(b) 
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onboard computer to perform calculations for generating the depth map. It offers a panoramic 

field of view (FOV) of 110 degrees vertically and 360 degrees horizontally, as illustrated in 

Fig. 2. Its effective maximum working distance ranges from 5 to 10 meters depending on its 

height. 

 

2.3 Algorithm implementation 

Following previous studies using GPUs for real-time imaging [11, 12], an onboard platform 

with an integrated GPU has been selected since all the needed calculations can be performed in 

a time frame fast enough to be able to produce image in real-time with a total latency of  

100 ms and a framerate of 20 frame per second (fps).  

The localization algorithm chosen is the Generalized Cross-Correlation with Phase-

Transform (GCC-PHAT) [16]. This algorithm starts by calculating the cross power spectral 

density (CPSD) for each microphone pair (𝑚, 𝑛). 

where 𝑘 is the discrete frequency index, 𝑃𝑚[𝑘] and 𝑃𝑛[𝑘]are the discrete Fourier transform 

of microphones 𝑚 and 𝑛 pressure signals and * denotes the complex conjugate. As the signals 

are obtained in real-time, a Short-Time Fourier Transform is more appropriate to obtain 𝑃𝑚 and 

𝑃𝑛, using a window size 𝑁 of 1024. The degree of overlap, window size, and zero padding can 

all be adjusted to enhance resolution and contrast. It is possible to obtain the approximation of 

the cross-correlation of each microphone pair by applying the inverse Fourier ℱ−1 transform 

and the PHAT 𝜑𝑃𝐻𝐴𝑇 transform to the CPSD:  

𝐺𝑝𝑚,𝑝𝑛
(𝑘) = 𝑃𝑚[𝑘]𝑃𝑛

∗[𝑘], (1) 

𝑅𝑦𝑚𝑦𝑛
[𝑠] = ℱ−1(𝜑𝑃𝐻𝐴𝑇 ∙ 𝐺𝑝𝑚,𝑝𝑛

(𝑘)) = ℱ−1 (
𝑃𝑚[𝑘]𝑃𝑛

∗[𝑘]

|𝑃𝑚[𝑘]||𝑃𝑛
∗[𝑘]|

), (2) 

Fig. 2. (a) PAL-USB 3D depth camera FOV and (b) an illustration showcasing its depth perception 

including an image positioned at the top, and below, a heatmap indicating distances (where blue 

signifies proximity and red signifies distance). 

(a) (b) 
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where 𝑦𝑚 and 𝑦𝑛 are the filtered signals and 𝑠 𝜖 {0, … ,𝑁 − 1}. By having spatial data for 

each pixel, which corresponds to potential sources, the Euclidean distance between each 

microphone pair can be calculated. Then, this distance must be divided by the speed of sound 

to obtain the delay between these two microphones 𝜏𝑚𝑛(𝑖) such as 

where 𝑟𝑚⃗⃗⃗⃗  and 𝑟𝑛⃗⃗  ⃗ are the position vectors of microphones 𝑚 and 𝑛, 𝑟𝑖⃗⃗  is the cartesian position 

vector of pixel 𝑖 and 𝑐0 = 343 m/s is the speed of sound in air at ambient temperature. Finally, 

to obtain the acoustic image 𝐼(𝑖), the sum of the values obtained by indexing cross-correlation 

vector with the delay calculated for each pixel for all microphone pairs needs to be evaluated. 

This will return the relative gain for each pixel. 

The same process was described in [17]. However, since the algorithm has a complexity of 

𝑂(𝑀2), it requires significantly more calculations due to the increased number of microphones, 

now totalling 64 instead of 11. In order to implement the algorithm on a GPU, it is important 

to break it down into kernels, which are individual functions executed within the numerous 

GPU cores. The on-board computer employed in this array system is the NVIDIA’s Jetson Orin 

AGX, currently recognized as the cutting-edge solution in on-board computing featuring GPU 

capabilities. It uses a 2048-core NVIDIA Ampere architecture GPU with 64 Tensor Cores and 

a 12-core 64 Gb CPU. The CUDA library, provided by NVIDIA, is commonly used for GPU 

coding. It's worth mentioning that memory access within the kernels can impact performance, 

potentially leading to speed improvements if managed effectively. Figure 3 depicts the 

algorithm broken down into kernels to produce an acoustic image. 

The initial kernel, labelled "cufft (fft)," employs the highly optimized cufft sub-library in 

CUDA for a Real-to-Complex Fast Fourier Transform calculating 𝑃𝑚 and 𝑃𝑛 in Eq.1. It achieves 

remarkable speed, completing the transformation for 64 signals of 1024 data in less than 8 μs. 

It is important to note that all the kernels function with a data structure of 32-bit floats. The next 

kernel labelled "delay_mic," computes the Euclidean distance between each microphone and 

every pixel, denoted as |𝑟𝑚⃗⃗⃗⃗ − 𝑟𝑖⃗⃗ |. The computation of 𝜏𝑚𝑛 in Eq. (3) occurs subsequently to 

𝜏𝑛𝑚(𝑖) =
|𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑖⃗⃗⃗  |−|𝑟𝑛⃗⃗⃗⃗ −𝑟𝑖⃗⃗⃗  |

𝑐0
, (3) 

𝐼(𝑖) =
1

𝑀𝑝
∑ ∑ 𝑅𝑦𝑚𝑦𝑛

(𝜏𝑚𝑛(𝑖))
𝑀−1
𝑛=𝑚+1

𝑀−1
𝑚=1 , (4) 

Fig. 3. GCC-PHAT algorithm separated into GPU kernels and their execution time for 64 microphones 

and over 150000 pixels. 
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restrict iteration over microphone pairs. In practice, for a scenario involving 64 microphones 

and over 150,000 pixels, this kernel typically takes around 320 μs to complete. Following this, 

the third kernel, "fft_norm," computes the norm of each microphone signal 𝑃(𝑘) for subsequent 

application in the PHAT transform outlined in Eq. (2). Given the task of processing only 64 

signals, this kernel generally executes in 17 μs. The "fft_mul" kernel follows by calculating the 

multiplication between the CPSD and the 𝜑𝑃𝐻𝐴𝑇 filter using the "fft_norm" output. Afterwards, 

a Complex-to-Complex Inverse Fast Fourier Transform is done to obtain 𝑅𝑦𝑚𝑦𝑛
(𝑠), as provided 

by Eq. 2, also using the cufft sub-library. Finally, the summation of the cross-correlations of all 

microphone pairs for each pixel is done in the "sum_index" kernel as well as the calculations 

and indexing of the delays, returning the relative gain shown at Eq. (4). It is worth noticing that 

in the example depicted in Fig. 3, the computing time of this kernel is notably longer, measured 

in ms. The extended duration primarily arises from the dual summation required for its 

computation and the necessity to access non-coalesced memory during the indexing process. 

This completes the image generation process on GPU, with an estimate time of 15 ms, 

excluding memory transfers between CPU and GPU.  

2.4 Integration  

Due to the decoupling of the audio and video systems, the acquisition occurs asynchronously, 

resulting in audio and videos updates at different rates. To overcome this, synchronization and 

multithreading systems are essential for initiating image generation in real-time. This is 

achieved through a producer-consumer structure: the "producer" thread captures signals and 

stores them in a First-In First-Out (FIFO) buffer, while the "consumer" thread retrieves them as 

needed. This architecture allows for jitter within the on-board computer without impeding its 

performance. Regarding the Server/client module, it utilizes a straightforward TCP/IP transfer 

protocol, employing two ports: one for communication (control) and another for transferring 

substantial data, such as the image generated at a rate of 20 frames per second. 

As previously stated, the antenna is designed in an open sphere configuration. This selection 

is arbitrary as both open and closed sphere configurations have been demonstrated to perform 

effectively with GCC, even without accounting for diffraction effects in the case of the closed 

sphere [18]. With 16 vertical branches, each housing 4 microphones and following the 

circumference, the antenna boasts a total of 4 acquisition hubs utilizing the 4×4 configuration 

as illustrated in Fig. 1. The microphones are connected through flex-PCBs in a 2 by 2 

configuration separated by 100 mm. Despite the Jetson's provision of 6 integrated I2S ports, 

only 2 are physically accessible with the provided development kit. To overcome this limitation, 

a custom carrier board was developed to facilitate access to the required 4 ports. The first 

antenna prototype was engineered with adaptability in mind, enabling easy adjustment of its 

microphone arrangement as required. Each microphone arm boasts numerous connection 

points, facilitating swift attachment of the microphones using a quick-connect mechanism. The 

entire antenna is crafted through 3D printing, utilizing a threaded rod for its core support and 

retention system, along with an aluminum tripod attachment. The microphone struts are printed 

using resin for structural resistance, while the remaining components are made from PLA. 

Figure 4 shows the acoustic camera with its 315 mm spherical antenna. 
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The real-time criterion is met when the image’s refresh rate is sufficiently high to create a 

video-like without significant latency. In this application, the target refresh rate is 20 Hz, 

meaning minimally 20 images should be generated per second. Regarding latency, it's quite 

reasonable to assume that a 100 ms delay would remain imperceptible, allowing for a margin 

of additional time. 

In Table 1, the average time taken by each module in the creation of an acoustic image, along 

with the overall duration, is presented. This table covers the entirety of the process, including 

the acquisition of audio and video signals, image generation on GPU, and transfer to the client's 

user interface.  

Total Audio Video GPU UI transfer 

30 ms 1 ms 9 ms 18 ms 2 ms 

Table 1. Average duration of each module for producing an acoustic image with 64 microphones and 

150 528 pixels (224x672). 

Fig. 4. (a) Actual image of the acoustic camera prototype and (b) a modeled representation. 

Microphones are linked via flex-PCBs and are easily attached to the antenna branches using a quick-

connect mechanism. 

(a) (b) 

PAL-USB 

Camera 

Microphone 

arms 

Quick-connect 

attachment 

Flex PCB 

Jetson Orin 

AGX 
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Following the table results, a refresh rate of 33 Hz is reached, demonstrating the antenna's 

ability to operate in real-time. To compute latency, the ping time must be added to the image 

production duration. For a wired antenna, the ping delay typically ranges between 10 and  

40 ms. However, with wireless connections, it can extend up to 100 ms, yet still maintaining 

the appearance of low latency. 

3 CONCLUSIONS 

In summary, the goal of this project was to design a cost-effective 3D real-time acoustic camera 

aimed at identifying and characterizing noise sources within noisy and confined workplaces. 

This involved addressing technical challenges such as integrating a high number of digital 

MEMS microphones within a large diameter sphere, achieving a 64-microphone spherical array 

of 315 mm diameter. Notably, this system can produce images at a rate of 30 Hz, providing 

valuable insights into transient noise sources in industrial environments while maintaining the 

processing unit localized on the antenna, making it transportable and easily installable. 

Several limitations have been identified, notably the audible noise produced by the Jetson 

Orin and PAL-USB camera, originating from their fan operation. This noise exhibits harmonic 

characteristics, which can be easily filtered or compensated for effectively. Furthermore, the 

PAL-USB camera currently imposes a fixed resolution for both depth and color images. While 

the depth resolution suffices, improving the color image quality would enhance visual clarity. 

Additionally, optimizing the video acquisition process could yield significant benefits. Video 

data received in polar coordinates necessitates conversion to Cartesian coordinates, a task 

currently handled by the CPU. However, transitioning this task to the GPU could reduce 

processing time on the video part, saving valuable milliseconds, and hence augmenting the 

refresh rate.  
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