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ABSTRACT 
Functional Beamforming (FB) offers excellent dynamic range, giving very small 

results, instead of the usual sidelobes, when the computed steering vectors match the 
normalized Green’s functions of the actual acoustic sources. It can be proven that FB 
result will not be less than the correct result if the steering vector is accurate. 
Unfortunately, small errors in the computed steering vector resulting from imperfect 
knowledge of or randomness in the acoustic propagation can cause the FB output to be 
significantly reduced from the correct value, especially if the FB exponent, 𝜈, is large. In 
practice, this constrains 𝜈 and consequently the dynamic range benefit of the method. 
This paper presents a way to adjust the steering vector to increase the BF output. A The 
method of steepest ascent is applied, moving the steering vector to increase the output. 
The length of the step is either the distance to the first maximum of the FB expression or 
a specified limit, 𝜖, whichever is smaller. The resulting method, Robust Functional 
Beamforming, RBF, has been shown in testing to offer both high dynamic range and low 
output loss if the two parameters, 𝜈 and 𝜀 are chosen correctly.  

 

1 METHOD AND DERIVATION 
Let the array cross spectral matrix be denoted 𝑪 and the normalized steering vector in the 

beamforming grid be 𝒈. The Functional Beamforming (FB) expression [1-4] for estimating 
the strength of the source associated with 𝒈  is 

 

𝑏!(𝒈	) = 	 (𝒈′𝑪
"
!𝒈*

!
																																																																(1) 

 
 

where 1 ≤ 𝜈 ≤ ∞. From the operator monotone nature of the function 𝑓(𝑡) = 𝑡
!
" on 0 ≤ 𝑡 <

∞, it follows that if 𝑪 ≥ 𝑠𝒈𝒈′, then 𝑏!(𝒈) ≥ 𝑠. However if 𝑪 = 𝑠𝒉𝒉′ where 𝒉 differs from 𝒈 
such that |𝒈#𝒉|	$ = cos$𝜃, then 𝑏!(𝒈	) = 	 cos$!𝜃 s. For example, suppose 𝜃 = 10° and 𝜈 =
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80. Then cos$!𝜃 = 0.0863 = -10.6 dB. In this case the error in 𝒈 is 𝒙 = 𝒉 − 𝒈. Assuming, 
without loss of generality that 𝒈#𝒉 is real and positive, then ‖𝒙‖ = C2(1 − cos 𝜃). For an 
angle of 10°, ‖𝒙‖ = 0.17. Adjusting 𝒈 by moving this distance in a direction parallel to 𝒉 −
𝒈 could produce a 10.6 dB increase in the beamformer output. 

Steering vector errors have several common sources. One is a beamforming grid that is too 
coarse, so that the peak is missed in between the grid points. Another frequent source of error 
relates to the microphone array design. For example, a grid-like structure holding the 
microphones gives rise to diffraction effects that alter the measured phase relative to the ideal 
Green’s function. A finite, solid, planar array can do the same thing. The microphones can 
have intrinsic phase differences between them. In a wind tunnel, nonuniform flow can alter 
the propagation paths on a steady or unsteady basis. Non-simple sources can have directivity 
functions that differ from a monopole model significantly over the extent of the array.  

Compensating for imperfect steering vectors is standard practice in adaptive beamforming, 
which is even more sensitive to errors than FB is. The approach of loading the diagonal by 
Tikhonov regularization leads to Robust Adaptive Beamforming [5]. Experience has shown 
that this is not very helpful for FB. An explanation is that effect of diagonal loading is to 
round off the peak of the point spread function, but FB does not need this treatment because 
the peak is already round. A method called Robust Capon beamforming corrects the steering 
vectors by changing them slightly to increase the beamforming output [5]. The amount of 
movement is constrained to an ellipsoidal set, and the method of Lagrange multipliers is 
applied to the resulting optimization problem.  

In the presentation here, the method of steepest ascent is used to move the steering vector 
in a straight line in array space until either a local maximum is attained or a limit on the 
amount of steering vector change, a trust radius, has been reached. This is done inside the 
[ ]! bracket of FB, so there is strong effect of increasing the function.  

In order to change 𝒈 without handling a separate constraint on its length to keep it 
normalized, the function to be maximized is 

 

𝑏
"
!(𝒈) =

𝒈′𝑪
"
!𝒈

𝒈′𝒈 																																																									(2) 

 
where the [ ]! operation is postponed and the . The steepest ascent direction is given by the 
gradient with respect to 𝒈′ so as to produce a complex column vector 

 

𝛁𝒈#	𝑏
"
! =	𝑪

"
!𝒈 − I𝒈′𝑪

"
!𝒈J𝒈																																																(3) 

 
Normalizing the resulting direction vector gives 
 

𝒂 = 	
𝒈′𝑪

"
!𝒈 − I𝒈′𝑪

"
!𝒈J𝒈

L𝒈′𝑪
$
!𝒈 − I𝒈′𝑪

"
!𝒈J

𝟐
																																																			(4) 
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Conveniently, 𝒂 is orthogonal to 𝒈.The value Eq. (2) along the line 𝒙 = t𝒂	is	
	

𝑏
"
!(𝒈 + 𝑡𝒂) =

𝒈′𝑪
"
!𝒈 + I𝒈′𝑪

"
!𝒂 + 𝒂′𝑪

"
!𝒈J 𝑡 + 𝒂′𝑪

"
!𝒂	𝑡$

1 + 𝑡$ 																												(5)	
 

It is straightforward to find the values of 𝑡'()* 	for which Eq. (5) reaches its peak. To 
simplify the expression let 
 

𝛼 = 𝒂#𝑪
"
!𝒂	,				𝛾 = 𝒈#𝑪

"
!𝒈	,							𝜅 = 	𝒈#𝑪

"
!𝒂																																						(6) 

 
Then 

𝑡'()* =	
𝛼 − 𝛾 +	C(𝛼 − 𝛾)$ + (𝜅 + 𝜅∗)$

𝜅 + 𝜅∗ 																																							(7) 
 

The positive root of the quadratic equation is selected because this is the appropriate one. 
Given a maximum 𝑡-limit, 𝜖 the output of RFB, is obtained by evaluating Eq. (5) at 𝑡'()* or 
𝜖, whichever is smaller, and raising the result to the power 𝜈. 

It is possible to apply Eq. (5) by using an algebraic expression for the updated 
beamforming result. However, in context of deconvolution, it is preferable to explicitly 
compute and normalize the new steering vectors 𝒈 + 𝑡𝒂 so that the various updated steering 
vectors in the grid can be used to update the point spread function. In this way, the 
deconvolution is still logically consistent, only based on the revised steering vectors instead of 
the original ones. This should compensate for the increased raw beamformer output in 
computing the final, quantitative, result. 

The new method is called Robust Functional Beamforming (RFB). Examples of its use are 
given in references [8] and [9]. 

2 SAMPLE RESULTS 
Real data, instead of simulations, is used to illustrate the performance of the method. The 

first uses a 40 element acoustic camera with a 30 cm aperture imaging the loudspeaker near 
the center of Fig. 1.  

In this example, inaccurate steering vectors are created by using a beamforming grid that is 
deliberately made to be too coarse. The nominal grid size for processing this data has a grid 
spacing of 3.5 mm, but 20×20 binning is used to produce a grid size of 70 mm. The meaning 
of binning in this case is that a coarse grid was used for beamforming and the resulting values 
were used to fill in the unused points. Results for 3 kHz with 𝜈= 80 and 𝜖 = 0 and 0.02 are 
shown in Fig. 2.  

The peak levels in the speaker ROI, the green box in Fig. 2, as a function of frequency are 
shown in Fig. 3, along with the median microphone spectrum. For a given frequency, the RFB 
output increases with 𝜖 up to a point and then stops increasing. The limiting value is slightly 
below the array median because the array data include other sources and propagation paths in 
addition to sources in the green ROI. The noise is broadband and the analysis bands are 
somewhat wide (1/12th OB), so reflection effects that would reduce the array median relative 
to the  ROI sources are not expected in this case. The fan source in the picture was turned off. 
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The effect of 𝜖 on the point spread function is illustrated in Fig. 4 by showing horizontal 
profiles of unbinned RFB plots through the speaker for a single frequency, 𝜈 = 80, and several 
values of 𝜖. The peak aligns with the tweeter component of the speaker at 𝑥 = 1.723 m. The 
PSF for 𝜖 = 0.02 is almost a rectangular box, which may be the most desirable shape for a 
PSF intended for quantitative measurements. 

 

 
Fig. 1 Loudspeaker test setup. 

 
Fig. 2  Binned RFB for 3 kHz using 𝜈= 80 and 𝜖 = 0 (top) and  0.02 (bottom). 
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Fig. 3 Peak RFB levels for the speaker data with 𝜈 = 80	𝑎𝑛𝑑	binned beamforming as functions of 
frequency and 𝜖. The median spectrum for the array microphones is also shown. 

 
Fig. 4 Horizontal profiles of the RFB map for the speaker at 10 kHz.  levels for the speaker data with 
𝜈 = 80 functions of frequency and 𝜖. The tweeter element of the speaker is at x = 1.723 m. 

Robust Functional Beamforming plots for the DLR 1 beamforming benchmark data [6&7] 
are given in Fig. 5. In these high frequency plots RFB has dynamic range with the 
preservation of levels of conventional beamforming. 
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Fig. 5 Robust Functional Beamforming plots for DLR 1 benchmark data. The top row is for 7551 Ha 
and the bottom row is 13454 Hz. The first column is conventional beamforming. The middle column is 
FB with 𝜈 = 8, and the right column incorporates 𝜖 = 0.2 for RBF. 

3 DISCUSSION 
Robust Functional Beamforming provides the nearly the dynamic range of Functional 

Beamforming while removing the problem of peak loss due to steering vector errors. It 
depends on a parameter, 𝜖 which, at present, needs to be determined by trial and error. 
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