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Abstract

The mitigation of noise sources that stem from rotating machinery is an important task in
acoustical engineering. Oftentimes, sound sources of rotating machinery are produced by
flow-airfoil interaction. These sources are known to have non-uniform radiation patterns.
For the detection of sound sources, measurements using microphone array methods have
gained great popularity. Especially for rotating sources, the method of the virtual rotating
array is widely used to determine acoustic source distributions.

This contribution extends prior work on the virtual rotating array method by estimating
not only source position and strength, but also direction in which the sound is emitted.
Two different inverse array methods are proposed to calculate the radiation patterns. The
first one is the inverse method SODIX, which derives the discrete directivities towards
the microphone positions from each source. Alternatively, the covariance matrix fitting
algorithm in conjunction with non-uniform transfer functions at the source positions is used
to determine the directivities.

The proposed algorithms are evaluated by a microphone array measurement of a five-
bladed fan with a spiral array on the suction side.

1 INTRODUCTION

Turbine fans and ventilation equipment are widely used in the industry and daily life. Those
fans produce a significant amount of noise due to their fast-rotating blades. To lower those noise
sources, detailed knowledge about mechanisms generating noise is needed. For the detection
of sound sources on rotating machinery, microphone array methods have become increasingly
popular. Multiple algorithms have been proposed for this purpose. Which can be divided in
time domain solutions that calculate the beamforming result with the constraint that the focus
point is moving together with the source position [17]. This method was also applied to fan
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noise [11]. In contrast, there are frequency domain solutions, that compensate for the motion
of the sources by virtually moving the microphones [5, 13]. The latter have the advantage that
deconvolution methods, which are based on the cross-spectral matrix and therefore only work
for static sources, can be easily applied. In addition to the deconvolution methods, some other
high-resolution algorithms are proposed based on sparse solutions for solving inverse problems
of acoustic localization. These methods aim to model a source distribution from the measured
cross-spectral matrix and assumed propagation functions by matrix inversion [1, 21]. An inverse
microphone method that uses non-uniform directivities was presented by Suzuki [18]. The
generalized inverse beamforming technique is based on the eigenvalue decomposition of the
cross-spectral matrix and different dipole directivities as transfer functions. Dipole directivities
in the transfer functions were already introduced for beamforming algorithms [9] and applied
to rotating sources using dipole sources with unknown orientations [4].

Another way to calculate the directivities with an inverse method was introduced by Funke
and Michel [3, 10]. THe SOurce DIrectivity modeling in the cross-spectral matriX (SODIX)
algorithm directly calculates the source strength towards the direction of every microphone in
the array. A first feasibility study with an artificial sound source consisting of eight speakers on
a rotating beam has been shown before [8].This work uses the method to estimate the source
directivities of the fan blade.

Section 2 gives a short overview of the virtual rotating array method, as well as both inverse
methods used for the calculation. The experimental setup of the fan and the microphone array
measurements is presented in Section 3. Section 4 shows the source distributions and directivi-
ties of the fan and Section 5 summarizes the findings of this work.

2 METHODS

2.1 VRA

In order to use microphone array methods in the frequency domain, the motion of the rotating
sources needs to be compensated for. The so-called virtual rotating array (VRA) method [5]
tracks the angular position of the rotating source and rotates the virtual microphone positions
accordingly. Since the setup uses a planar spiral array and the original method only works
for ring geometries, the extended version for arbitrary microphone arrangements is used here
[6, 7]. This method uses radial basis function interpolation to calculate the sound pressure
p(x) for every point in space for each time sample by solving a linear system for each weight
coefficient wi and then multiplying it with a radial basis function Φ :

p(x, t) =
M

∑
i=1

wi Φ(‖x− xi‖2) (1)

2.2 Inverse microphone array methods

The Covariance Matrix Fitting method assumes that the pressure signal pi at the microphone i
of M total microphones is caused by acoustic sources q j at the j-th focus grid point of N total
points:

p (ω) = A (ω)q(ω) , (2)
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with A being the transfer matrix of shape M×N. The entries of the transfer matrix describe the
sound transfer from each microphone position to each focus point. For a monopole source the
Green’s functions are given by:

a =
1

4πr
e− jωr/c0, (3)

where r denotes the distance from the microphones to the grid points and c0 being the speed of
sound. For a source term with a dipole directivity the transfer changes to:

a =
~x cos(θ)

4πr
e− jωr/c0, (4)

with the dipole orientation denoted as ~x and θ denotes as the elevation angle as seen from the
dipole orientation. The pressure amplitudes caused by the sources can be written in a quadratic
form to obtain a modeled cross-spectral matrix Cmod:

Cmod = p(ω)pH (ω) = AD2AH . (5)

The source matrix D is a diagonal matrix containing the source strengths D = diag(q) and
(·)H is the Hermitian transpose. This modeled CSM can now be compared to the measured one
C which holds all possible cross-spectra p(ω) from the M microphone signals:

C = E{p(ω)p(ω)H}. (6)

The cross-spectral matrix can be computed using Welch’s method [20] in which the signal is
divided into K blocks that are then transformed into the frequency domain by means of an FFT.
For each discrete frequency, the complex valued sound pressure values pm are then averaged
over all blocks

C =
1
K

K

∑
k=1

pk (ω)pk (ω)H . (7)

The problem formulation of CMF can then be expressed as a cost function for D between the
two matrices

FCMF(D) = ‖C−Cmod‖2. (8)

With a constraint for a positive source strength D ≥ 0 and an additional L1 regularization
term α , which is introduced to force a sparse solution, yields:

FCMF(D) = ‖C−ADAH‖2 +α‖D‖1 (9)

The formulation for the SODIX algorithm is an extension of the CMF algorithm. Instead of
using monopole source terms it assumes discrete directivities of each source in the direction of
each microphone in the array. The matrix D is not a diagonal matrix in this case and is extended
so it contains the source strengths for every focus point in every microphone direction:

FSODIX(D) =
∣∣C−ADDHAH∣∣2 . (10)

Since the minimization problem is solved iteratively with a gradient solver, the derivative of
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the cost function is necessary. Based on the algorithm proposed by Oertwig [12], which uses a
non-negative constraint, the derivative is given by:

∂F
∂D

=−4D ·Re
{

aaH (
C−aDDHaH)} (11)

The implementation of all microphone array methods in this work are calculated with the
open-source Python package acoular version 22.3 [15].

3 EXPERIMENTAL SETUP

The setup consists of a five-bladed fan with a diameter of 800 mm in a metal plate housing and
a planar spiral array with 63 microphones in the large anechoic chamber at TU Berlin. The
microphones are ordered in a sunflower spiral [19] and the parameters of the sunflower spiral
are chosen to be H = 1.0 and V = 5.0 according to Sarradj [14]. The array aperture of the spiral is
d = 1.5. A photograph of the setup and the suction side view of the fan is shown in Figure 1. The
distribution of the microphone sensors and the dimensions of the fan are shown in Figure 2. As
the rotation of the fan is not necessarily constant throughout an actual measurement, the motion
is tracked with a one-trigger-per-revolution signal. Assuming smooth transition of rotational
rates, the current angle is determined via spline interpolation from several consecutive trigger
events. The distance between the array and the fan blades is 1.21 meters and the fan rotates with
1050 revolutions per minute. For the measurement time, a duration of 40 seconds at a sampling
frequency of 51200 Hz was chosen. Important measurement parameters are summarized in
Table 1.

(a) (b)

Figure 1: Photographs of the fan measurement setup. (a) shows the setup and in the anechoic
chamber and (b) shows the suctions side view of the fan at the laser trigger instance.

The cross-spectral matrix was computed using a block size of 1024 samples and a Hanning
window function with 50 % overlap. The virtual rotating array method is applied with cubic

4



9th Berlin Beamforming Conference 2022 Jekosch and Sarradj

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x/m

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
/m

0

1
2

3

4

5
67

8

9

10
11 12

13
14

15

16

17
18

19
20

21 22

2324
2526

27
28 29 30 31

32
33

34

35

36

37

38 39
40

41

42

4344

45 46

47

48

49

50

51

5253

5455

56 57

58
59

60

61

62

(a)

Ø7
86

 m
m

5x  
72
˚

Ø186 mm

(b)

Figure 2: (a) shows distribution of the 63 microphones in the array plane and (b) shows the
dimensions of the fan.

Table 1: Experimental measurement and data acquisition parameters.
Microphones array M = 63, vogelspiral

aperture = 1.5 m
Measurement time 40 s
Sampling rate 51200 Hz
Focus plane distance 1.21 m
Fan diameter = 0.8 m

blades = 5
Rotational speed 1050 rpm

1 trigger per revolution

basis functions. For the calculation of the source distributions with the CMF method dipole
transfer functions are used as a propagation function. The minimization problem in Equation 9
was solved by matrix inversion using a LASSO solver with L1 regularization according to the
Bayesian iteration criterion [16]. Source distribution and directivities using the SODIX method
are obtained with the Newton-like gradient decent method L-BFGS-B [2]. An overview of all
computation processing parameters is given in Table 2.

4 RESULTS AND DISCUSSION

Figure 3 shows the source distribution in terms of the sound pressure level at the array center
at the one-third octave band at 2 and 4 kHz with a dynamic of 10 dB. It uses a vertical dipole
orientation perpendicular to the array plane. The CMF results are quite sparse and only resolve
the sound source at the tip of each blade due to the penalization of the Lasso algorithm. Assum-
ing that the dipole sources are perpendicular to the rotor blades, the orientation of the sources
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Table 2: Computation processing parameters.
FFT block size 1024
FFT window Hanning, 50% overlap
Evaluation grid 1 m × 1 m

3 cm resolution
VRA method cubic-rbf
CMF solver LASSO-BIC [16]
SODIX solver L-BFGS-B [2]
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Figure 3: One-third octave band source maps for 2 and 4 kHz using CMF and dipole transfer
functions in y-direction.

should change with the angle of rotation. Since this is not possible in the case of a statically
arranged dipole as in this calculation, a directional source detection along the rotor blades is not
possible. In order to calculate a better directional characteristic with this method, the orientation
of the directive sources would have to be determined together with the source strengths.

Figure 4 shows the source for all points and the source directivities towards the array
microphones at the 2 kHz one-third octave band. The dynamic range is set to 10 dB for the
source maps and 20 dB for the directivity distributions. The directivity maps are linearly
interpolated between the microphone positions. The source map is not sparse in this case,
due to the lack of regularization in the SODIX algorithm. Still, the sound sources along the
five blades of the fan are visible even though a misidentification of sources at borders of the
calculation grid occur. The directivities are distributed evenly in angular direction. A small
increase in sound power towards the center of the array is visible.

Considering the fact that the SODIX algorithm calculates the directivities for each focus
point, areas for different parts of the fan can be evaluated. In this work, four integration sectors
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Figure 4: (a) One-third octave band source maps for 2 kHz using SODIX and (b) the directivity
of all sources in the calculation grid towards the array microphones.

are considered that comprise two leading edges of two fan blades and two trailing edges of
the same blades. The first blade is moving upward in a clockwise orientation of the rotating
reference system and the other one downwards at the other side. Figures 5 and 6 show the
integrated area of the sources and the directivities for the two leading edges. The integration
areas are shown in red. For both cases the directivities vary strongly along the circumference of
the array and have their maxima at the position of the blade. The trailing edge results are shown
in Figures 7 and 8. The integration areas are shown in blue. The fan blade airfoils have angle of
attack at the tip around 30◦. If directive sources are generated perpendicular to the trailing edge,
they should have a directional radiation in the opposite direction of rotation of the fan. This can
indeed be observed in both cases as the blade moving up in Figure 7 has its maxima towards the
lower positioned microphones in the array and the blade moving downwards in Figure 8 has its
maxima rather at the top of the array.

5 SUMMARY

Methods for the source distribution and directivity of rotating sources have been presented and
applied to measurement data of an axial fan. The virtual rotating array method using radial basis
function interpolation was successfully applied to the microphone array measurement data with
a planar spiral array. The resulting cross-spectra matrix with motionless sound sources used to
fit sound source distributions with inverse array methods. While the CMF method with non-
uniform transfer functions was only able to detect sources at the tips of the blades, the SODIX
method was able to generate directional characteristics along the blades trailing and leading
edges.
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Figure 5: (a) One-third octave band source maps for 2 kHz with integration area of the first
leading edge in red and (b) the directivity of the sources in the integration area to-
wards the array microphones.

−0.4 −0.2 0.0 0.2 0.4

−0.4

−0.2

0.0

0.2

0.4

2000 Hz
45

42

39

36

L
p
/d

B

x/m

y
/m

(a)

−0.5 0.0 0.5
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

L
p
/
d

B

x/m

y
/m

(b)

Figure 6: (a) One-third octave band source maps for 2 kHz with integration area of the sec-
ond leading edge in red and (b) the directivity of the sources in the integration area
towards the array microphones.
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Figure 7: (a) One-third octave band source maps for 2 kHz with integration area of the first
trailing edge in blue and (b) the directivity of the sources in the integration area
towards the array microphones.
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Figure 8: (a) One-third octave band source maps for 2 kHz with integration area of the second
trailing edge in blue and (b) the directivity of the sources in the integration area
towards the array microphones.
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