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Abstract

Microphone arrays have long been considered powerful tools for acoustic measurements
and as such in the low-noise design of technologies such as aircraft, wind turbines and
automobiles. Processing the microphone data to yield accurate results quickly has therefore
been an active area of research. However, existing methods suffer from suboptimal spatial
resolution, undesirable artifacts and high computational cost and consequently new tech-
niques need to be explored. In this contribution, a recently proposed method coined Trained
Iterative Soft Thresholding Algorithm (TISTA) is applied to the processing of microphone
array measurements to create source maps using a discretized grid. The TISTA merges iter-
ative algorithms designed to solve sparse linear inverse problems with data driven machine
learning algorithms and was found to yield promising results. Synthetic source maps and
corresponding microphone data are specifically computed on demand for training as well as
evaluation and for a wide range of examples the sound sources are located and characterized
with considerable accuracy at a Helmholtz number of 16 (5488 Hz). The technique is com-
pared to the well established CLEAN-SC beamforming algorithm and while CLEAN-SC
tends to overlook sources, particularly when many are present in the sound field, the TISTA
can accurately identify a comparably large number of sources, while also being significantly
faster.
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1 Introduction

Noise is a stress factor and thus to be reduced to a minimum [8]. For this purpose it is helpful
to know how much noise emerges exactly where - in other words to characterize and locate
sound sources. This can be achieved using Microphone Arrays (MAs) - a set of microphones
arranged along a deliberate geometry. However, processing the MA signals is associated with
various issues, including high computational cost, low spatial resolution and undesirable artifacts
[5, 11, 19]. It has thus been suggested to use machine learning techniques in order to improve
the signal processing with respect to quality and efficiency [15].

One way to approach the problem at hand is referred to as compressed sensing, which has
been a field of ongoing interest in the signal processing research community [7] and a wide
variety of algorithms have been proposed for this task. Based on the Iterative Soft Thresholding
Algorithm (ISTA) [3], a number of subsequent improvements have been suggested, the earlier
of which retain the iterative nature, while later ones like the Learned Iterative Soft Thresholding
Algorithm (LISTA) [4, 9], as well as TISTA [12, 23] discussed in this work, reframe the approach
in a machine learning setting, where key parameters are optimized using data driven methods.
These algorithms are designed such that they are applicable in a variety of scenarios and the Fast
Iterative Soft Thresholding Algorithm (FISTA) [3] - an earlier iterative instance - has already
been applied to MA data [16]. However, to the best of the authors knowledge, TISTA has not
yet been tested on MA setups.

Thus, the purpose of the work presented here is to give a first informed assessment on the
feasibility of TISTA with respect to MA signal processing. Namely, it is to be shown

• that it can - in principle - retrieve positions and characteristics of sound sources,

• how accurate the resulting source maps are,

• how much time this takes and

• whether or not TISTA can improve upon existing methods.

For this purpose it is compared to the CLEAN-SC algorithm, proposed in [22].
In Section 2 the theoretical framework is laid out, starting with the information theoretical

fundamentals. First, the central linear inverse problem is outlined, followed by TISTA intended
to solve it, including the employed principles of machine learning. Finally, the underlying
physical model is introduced alongside the CLEAN-SC algorithm.

In Section 3 the methods used to approach the problem at hand are described, starting with
the assumed measuring environment - that is, the MA geometry and the discretized source
space, also referred to as grid. Subsequently the generation of training data and the training
itself are detailed. Furthermore, a brief clarification of how complex numbers are represented
in computer memory is given.

In Section 4, the results are laid out, including example source maps, computation time
statistics and the training history.

In Section 5, the results are put into context with a particular focus on the inherent uncertainties
of the methodology.

The entirety of this work is implemented using the programming language Python [24],
particularly its modules NumPy [10], TensorFlow [1], Pandas [25] and Acoular [21].
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2 Theoretical Framework

2.1 Linear Inverse Problems

This section generally draws from the ideas presented in [2, 7, 9]. Linear inverse problems arise
when, based on an observable phenomenon, its cause is to be derived and their relation can be
assumed to be linear. The problem can be stated as

m = As + n, (1)

where s ∈ C𝑆 is an unkown signal observed through a linear system A ∈ C𝑀×𝑆 to yield a known
measurement m ∈ C𝑀 which may be corrupted by noise n ∈ C𝑀 . The goal is then to recover
the original signal s. In cases where 𝑀 < 𝑆 the problem is considered ill-posed, as a definitive
solution may not and often does not exist [2]. However, if the signal s can be assumed to be
sparse, a reasonable estimate - that is, a vector s̃ ∈ C𝑆 that minimizes an appropriate error metric
- may be found. One possible approach is presented in the following section. 1

2.2 TISTA

TISTA is constructed as suggested in [12], also drawing from [4, 23]. It is intended to derive
from a known measurement m an estimate s̃ for the original signal s. This is achieved recursively
- the output of each layer depending on the result of the one before it - formally

s̃𝑡+1 = 𝜂(s̃𝑡 + 𝛽𝑡B(m − As̃𝑡), 𝜆𝑡) (2)

with the initial condition s̃0 = 0. The number of layers is set to a constant 𝑇 ≥ 𝑡 ≥ 0 and
consequently the derived estimate is the output of the final layer s̃ = s̃𝑇 . The operation m − As̃𝑡
can be thought of as a linear error computation, where the measurement that would result
from the estimate of the respective layer As̃𝑡 is compared to the actual input measurement m.
This is then mapped back to the signal vector space C𝑆 by a pseudo-inverse linear mapping
B = A𝑇 (AA𝑇 )−1 ∈ C𝑆×𝑀 and weighted with some step size 𝛽𝑡 ∈ R. Finally, the output of each
layer is subject to a shrinkage function 𝜂 with a shrinkage parameter 𝜆𝑡 ∈ R. The shrinkage
function is defined elementwise as

𝜂(𝑥, 𝜆) = sgn (𝑥) · max ( |𝑥 |, 𝜆) (3)

and can be thought of as a sieve, where 𝜆 represents its mesh size. More and more elements of
s̃𝑡 are set to zero with each layer, exploiting the sparsity of the original signal. The shrinkage
function is shown in Fig. 1 with a shrinkage parameter 𝜆 = 1. This shrinkage function is
different from the one that was originally proposed for TISTA, since the latter relies on statistical
assumptions that have not yet been shown to be valid for the problem at hand. The one used
here is taken from [4]. Lastly - again deviating from the original formulation of TISTA - the
final output s̃𝑇 is subject to a 𝑅𝑒𝐿𝑈 function, defined as

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) (4)

1See Section 3.5 for details on how complex numbers are represented in computer memory.
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Figure 1: Shrinkage Function 𝜂 with 𝜆 = 1

setting all negative values to zero, since source strength is strictly non-negative.
Now, the key idea is to subject the step size 𝛽𝑡 and the shrinkage parameter 𝜆𝑡 to data driven

optimization methods, which are discussed in the following section.

2.3 Machine Learning

This section is based on [4, 14, 18], according to which machine learning, namely supervised
learning as it is employed here, is based on a set of training data: As mentioned above, the signal
s that caused the measurement m is generally unknown, but for machine learning techniques to
work instances of known signals and their corresponding measurements 𝜙 = {s𝑑 ,m𝑑}𝐷𝑑=1 are
necessary. Based on such data and the set of trainable parameters 𝜃 = {𝛽𝑡 , 𝜆𝑡}𝑇𝑡=0, a so called
mean squared error function can be defined, formally

L(𝜃, 𝜙) = 1
𝐷

𝐷∑︁
𝑑=1

∥s̃(m𝑑 , 𝜃) − s𝑑 ∥2
2 , (5)

where s̃ is, as stated in Section 2.2, the output of the algorithm and, as such, a function of its
input m and the parameters 𝜃, while 𝐷 is the size of the dataset 𝜙, or a subset of it, also called
batch. This loss function maps the entire set of parameters 𝜃 onto a scalar, which is a measure
of the algorithms output error with respect to the data 𝜙, hence the term loss. Consequently, it
is possible to find a set of parameters 𝜃 that minimizes the loss, formally

𝜃 = arg min
𝜃

L(𝜃), (6)
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which may be achieved by algorithms based on an approach called gradient descent: The
gradient of the loss is calculated with respect to each parameter and repeatedly subtracted from
them, causing the loss to approach a local minimum. Starting with some initial values 𝜃0, every
subsequent update of the parameters can be formalized as

𝜃𝑡+1 = 𝜃𝑡 − 𝜌 ∇𝜃L(𝜃𝑡), (7)

where ∇𝜃 denotes the gradient with respect to the parameters 𝜃, while 𝜌 ∈ R is a tunable
parameter called learning rate. This process is subsequently referred to as training. There are
a variety of algorithms designed for this optimization task, a thorough elaboration of which
is beyond the scope of this work, but is provided in [18]. The Adam optimization algorithm
presented in [14] is used for the entirety of this work.

Implicitly, the approach presented here is based on the central assumption that minimizing
the loss for known data will also minimize it for unknown data, which in turn relies on the
supposition that they are sufficiently similar in structure.

2.4 Cross-Spectral Matrix

Before the physical model is introduced, this section shall establish the Cross-Spectral Matrix
(CSM), according to the definitions in [6]. Assuming an acoustic measurement, in other words
sound pressures at a set of microphone positions 𝑝, the CSM is the covariance matrix of this
measurement, formally

CSM = E(𝑝𝑝𝐻), (8)

whereE is the expected value and 𝐻 denotes complex conjugation and transposition. Note that in
this setting, sound pressure is considered a stochastic process, implying that real measurements
do not necessarily coincide with this expected value. Rather they are assumed to approach it
with increasing accuracy, the longer the time frame over which they are averaged. However the
physical model introduced in the following section assumes perfectly accurate instances of the
CSM, each of their elements representing the actual expected value respectively. 2

2.5 Physical Model

The physical model follows the one presented in [13], also drawing from [5, 11, 19]. Sound
sources are assumed to be uncorrelated monopoles in a motionless fluid under free-field condi-
tions. Assuming a stationary sound field, acoustic quantities are represented in the frequency
domain.

A number of potential source locations - also called focus points or grid points - 𝑥𝑠 are
examined. With these, the signal vector s is defined such that each element corresponds to one

2See Section 5 for details on the possible repercussions of this assumption.
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of the locations and its value is equal to the source strength 3 at that location, formally

s =


𝑠1(𝑥1)
𝑠2(𝑥2)

...

𝑠𝑆 (𝑥𝑆)

 , (9)

where if no source is present, the source strength is zero. Since - as discussed in Section 2.1 -
s is assumed to be sparse, the number of potential source locations is supposed to significantly
exceed the actual number of sources.

Subsequently, the measurement vector m is defined using the CSM, of which only the upper
triangle elements are used, since they contain all the linear independent information [13].
Formally this can be expressed as

CSM =


𝑐1,1 𝑐1,2 𝑐1,3 . . . 𝑐1,𝑀
𝑐2,1 𝑐2,2 𝑐2,3 . . . 𝑐2,𝑀
...

...
...

. . .
...

𝑐𝑀,1 𝑐𝑀,2 𝑐𝑀,3 . . . 𝑐𝑀,𝑀

 → m =



𝑐1,1
𝑐1,2
...

𝑐1,𝑀
𝑐2,2
...

𝑐2,𝑀
...

𝑐𝑀,𝑀


, (10)

where 𝑐𝑖, 𝑗 = 𝑝𝑖𝑝
∗
𝑗
, with 𝑝𝑖 representing the sound pressure at the 𝑖-th microphone and ∗ denoting

complex conjugation.
When s and m are defined, the sensing matrix needs to be constructed such that m = As

holds. This is achieved using the transfer vector v𝑚,𝑠, which associates microphone positions 𝑥𝑚
with focus points 𝑥𝑠. If the assumptions stated at the beginning of this section hold, the transfer
vector can be formalized as

v𝑚,𝑠 (𝑥𝑚, 𝑥0, 𝑥𝑠) =
𝑟𝑠,0

𝑟𝑠,𝑚
𝑒−𝑖𝑘 (𝑟𝑠,𝑚−𝑟𝑠,0) , (11)

where 𝑥0 is an arbitrary but constant reference point, which is usually set to the position of
one of the microphones, as specified in Section 3.1. The distance between two points 𝑥𝑖, 𝑥 𝑗 is
denoted by 𝑟𝑖, 𝑗 = |𝑥𝑖 − 𝑥 𝑗 | and 𝑘 = 𝑐

𝑓
is the wave number, while 𝑖 denotes the imaginary unit.

3Source strength, as defined here, is the squared sound pressure at a reference location due to the source.
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The sensing matrix A can hence be defined columnwise as

A𝑖 =



v𝑖,1v∗
𝑖,1

v𝑖,1v∗
𝑖,2

...

v𝑖,1v∗
𝑖,𝑀

v𝑖,2v∗
𝑖,2

...

v𝑖,2v∗
𝑖,𝑀
...

v𝑖,𝑀v∗
𝑖,𝑀



, (12)

where ∗ denotes complex conjugation. Notably, Eq. (11) implies that v and - as a consequence -
A are frequency-dependent. A thorough proof that m = As holds for the above definitions can
be found in [13].

Lastly, in order to describe the frequency 𝑓 more generally, the dimensionless Helmholtz
number is defined as

He = 𝑓
𝑎

𝑐
, (13)

where 𝑐 = 343 m s−1 is the speed of sound and 𝑎 is the aperture of the MA, defined as the
maximum distance between two microphones.

2.6 CLEAN-SC

In this section, a brief and qualitative introduction of the CLEAN-SC algorithm used for
comparison shall be given, drawing from [5, 11, 22].

CLEAN-SC is based on conventional beamforming, where sound sources are characterized
using the CSM and steering vectors - elements of the transfer vector introduced in Eq. (11) - in a
delay-and-sum approach. However, the results of conventional beamforming are not sufficiently
precise, mostly because of so called side lobes - artifacts contaminating the derived source map.
The CLEAN-SC algorithm seeks to remove these side lobes. Each iteration finds the maximum
in the source map, replaces it by a clean beam and removes the spatially coherent side lobes.
Since the source map resulting from conventional beamforming is thought of as a convolution of
the true source map and the measurement system, CLEAN-SC is classified as a deconvolution
algorithm [17]. The implementation provided in Acoular [21] is used in this work and - as
originally proposed - the diagonal elements of the CSM are omitted.

3 Methods

3.1 Measurement Environment

The MA geometry follows a Vogel’s spiral - distances being normalized, resulting in an aperture
of 𝑎 = 1 - as suggested in [20] and consists of 16 microphones. The reference position 𝑥0
discussed in Section 2.5 is set to the position of the microphone closest to the origin.
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A number of potential source locations are considered and make up the discretized signal
space, also called grid. It consists of a total of 676 points, arranged parallel to the MA plane
along a regular square with a side length of 1 m and a resolution of 0.04 m. It is shifted 0.5 m
perpendicular to the MA plane and centered around the same point as the MA, as illustrated in
Fig. 2.
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Figure 2: Microphone Array (blue dots), Grid (black dots) and Origin (red x)

3.2 Data

As stated in Section 2.3, the training process requires a data set of known signals and the
resulting measurements, subsequently referred to as training data. Following the methodology
in [4, 12, 23], training data is generated on demand during training. Notably, the data is not
designed to model real measurements as accurately as possible. Rather, it is intended to be
generated quickly and easily while being reasonably representative of actual use cases. 4

First, instances of signal vectors s𝑑 are generated. Using the random variables
𝑟1 ∈ R𝑆 ∼ U(0, 1) drawn from a uniform distribution and 𝑟2 ∈ R𝑆 ∼ R(1) drawn from a
Rayleigh distribution in accordance with [11], the desired sparsity 𝑞 = 0.01 as well as the step

4See Section 5 for details on the limitations of this approach.
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function

H(𝑥, 𝑞) =
{

1 if 𝑥 < 𝑞

0 if 𝑥 ≥ 𝑞
, (14)

instances of s𝑑 can be formalized as

s𝑑 = H(𝑟1, 𝑞) |𝑟2 | + 0𝑖, (15)

where 𝑖 is the imaginary unit clarifying that source strength is modeled as purely real. The
process described above is visualized in Fig. 3.
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Figure 3: Example Case of Randomly Generated Source Distribution

Finally, s𝑑 is multiplied by the sensing matrix A at a Helmholtz number of He = 16, yielding the
associated measurement vector m𝑑 = As𝑑 . Note that the noise vector introduced in Section 2.1
is assumed to be n = 0.

3.3 Training

As stated in Section 2.3, TISTA is supposed to be trained, that is the parameters 𝛽 and 𝜆 need
to be optimized such that the loss becomes minimal. Therefore they are initialized with 𝛽𝑡 = 1
and 𝜆𝑡 = 0 for 0 ≤ 𝑡 ≤ 𝑇 , while the number of layers is set to 𝑇 = 30.

The Adam optimizer presented in [14] is used for training, with a learning rate 𝜌 = 8 · 10−4, a
batch size 𝐷 = 200 and a total of 200 batches per epoch. After each epoch, the loss is calculated
for one batch of separate but identically generated data, also called evaluation data. Once this
evaluation loss does not improve for 10 consecutive epochs - a value referred to as patience -
training is concluded, assuring that it does not run indefinitely on an otherwise theoretically
infinite data set. After each epoch the intermediate loss for both the training data and the
evaluation data are documented.

Aforementioned hyperparameters are summarized in Table 1.

3.4 Computation Time Measurement

TISTA as well as CLEAN-SC are run on an Intel ® Core ™ i7-8665U CPU using a single
thread. Wall-clock-time is measured for 105 randomly generated cases, with He = 16. Note that
computation time is measured for the successfully trained model after training.
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Table 1: Training Hyperparameters
Hyperparameter Symbol Value
Number of Layers 𝑇 30
Initial Step Size 𝛽 1
Initial Shrinkage Parameter 𝜆 0
Learning Rate 𝜌 8 · 10−4

Batch Size 𝐷 200
Batches per Epoch - 200
Patience - 10 Epochs

3.5 Complex Number Representation

As the implementation of the Adam optimizer does not allow the processing of complex numbers,
the data used here needs to be represented using real numbers only. This is achieved by stacking
vectors and matrices, as follows: For a complex vector v, real and imaginary parts are written
sequentially, which can be formally expressed as

v =

[
Re (v)
Im (v)

]
, (16)

and requires a similar approach for complex matrices, such that matrix-vector multiplication
yields results analogous to the original representation. For a complex matrix V, this is achieved
with

V =

[
Re (V) − Im (V)
Im (V) Re (V)

]
, (17)

an approach based on [13]. All quantities introduced as complex in this work are represented
this way at all stages of computation.

4 Results

4.1 Source Maps

A selection of source maps is shown in Figs. 4 to 6, including the true source distribution along
with predictions for both TISTA and CLEAN-SC. Three cases are shown with four, nine and 20
sources respectively, all of them at 𝐻𝑒 = 16. Notably, with many sources present in the sound
field, CLEAN-SC tends to overlook some of them, whereas TISTA can correctly locate all of
them.

4.2 Computation Time

Computation times are presented as histograms in Fig. 7 and statistical values in Table 2 for 105

cases with He = 16. TISTA outperforms CLEAN-SC by roughly a factor of five on average,
while also having a smaller standard deviation.
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Figure 4: True Source Distribution With Four Sources Along With Predictions of TISTA and
CLEAN-SC at Helmholtz number 16
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Figure 5: True Source Distribution With Nine Sources Along With Predictions of TISTA and
CLEAN-SC at Helmholtz number 16
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Figure 6: True Source Distribution With 21 Sources Along Predictions of TISTA and CLEAN-SC
at Helmholtz number 16
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Figure 7: Computation Time Histograms for TISTA and CLEAN-SC (logarithmic y-Axis, 105

Cases, 200 Bins)

Table 2: Computation Time Statistics for TISTA and CLEAN-SC (105 Cases, He = 16)
TISTA [s] CLEAN-SC [s]

Min 0.004 0.024
Mean 0.006 0.034
Std. Deviation 0.001 0.007

4.3 Training History

In Fig. 8, the training history, that is, how the loss changes over the course of the training process
is presented for both the training data and the evaluation data. The training process shows typical
convergent behavior as discussed in [14] and the errors for the evaluation data mostly coincide
with the errors for the training data. Using the hardware introduced in Section 3.4, the time
required for training is in the order of several hours.

5 Discussion

5.1 Cross Spectral Matrix and Noise

Following the paradigm of quick and easy data production discussed in Section 3.2, noise is not
considered in the model employed here.

Real measurements on the other hand, come with perturbations that can be assumed to
notably impact the CSM in various ways. For instance, [6] states that flow-induced noise -
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Figure 8: Training history

or more generally, perturbations that are uncorrelated over the microphones - can be assumed
to primarily affect diagonal elements of the CSM. Furthermore, as discussed in Section 2.4,
the CSM is assumed to perfectly represent the expected value of a stochastic process, which is
generally not the case for real measurements averaged over a limited time frame.

Sound sources may also - in most use cases - not be located at the exact position of a grid
point. Instead, they are more probably located between grid points. Acoustic, electric and digital
noise are also not represented in the generated data and since free-field conditions are assumed,
inaccuracies resulting from reverberation are not considered either.

In short it cannot be reliably concluded that TISTA will yield similar results in actual use
cases, since measurement noise may result in various artifacts in the source maps, or in greater
output errors than would be expected from the results shown here. However, in [12, 23], the
robustness of TISTA is tested and it is shown that it can perform reasonably well even with noisy
data, as long as the condition number of A is not too high.

5.2 Computation Time

On average TISTA is faster than CLEAN-SC by roughly a factor of five - a significant result
as CLEAN-SC is already considered a comparably fast method [11, 17]. Notably, numbers of
layers smaller than 𝑇 = 30 may suffice for TISTA to converge, in which case the computational
load would be even lower, so TISTA appears to be an exceptionally fast technique.

However, the methods used to assess the computation time come with a number of uncertain-
ties. Since Python is a high-level programming language and different modules where used for
TISTA and CLEAN-SC, it is not clear to what extent the implementation might be responsible
for the difference in computation time. Furthermore, computational cost generally depends on
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different variables for different algorithms. Namely, the number of sources can be assumed to
significantly impact computation time of CLEAN-SC, since it is iterated once for every source
it finds. Consequently, the more sources are present in the sound field, the longer CLEAN-SC is
kept running, which immediately affects computation time. TISTA on the other hand has a set
number of operations, so it can be expected that computation time is not affected by the number
of sources. Since the data set contains samples with variable numbers of sources, computation
times vary more notably for CLEAN-SC, which is reflected in the higher standard deviation
displayed in Table 2 and the visibly broader histogram in Fig. 7. Consequently the difference in
computation time may be less evident for data sets with smaller numbers of sources. Moreover,
the resolution and resulting number of focus points as well as the number of microphones may
affect computation times to different degrees.

A theoretical assessment of computational complexity - as given in [4, 12, 23] - may be more
insightful than the experimental measurement of computation time that was done here, but is
not provided in the literature for CLEAN-SC [22].

5.3 Training History

Errors for the evaluation data mostly coincide with the errors for the training data, which is not
surprising, since for a continually generated data set, overfitting - as discussed in [4] - is not to
be expected, as each sample is used only once. While this can generally be considered a good
indicator, the number of training samples used is in the order of 106, a scale not easily attained
in real measurements and it is not yet clear how the training process evolves for data sets of
limited size. However - as stated in [12, 23] - the training process of TISTA is generally very
robust due to the remarkably small number of trainable parameters and consequently it can be
assumed that training shows convergent behavior for smaller numbers of training samples than
were used here.

5.4 Resolution and Sparsity

As stated in Section 2.1, a key assumption is that the signal vector s is sparse and consequently
TISTA performs better the more elements of s are zero [12, 23]. For any given number of
sources, higher resolutions will result in lower relative numbers of non-zero elements in s and
consequently TISTA can be expected to perform increasingly well, the higher the resolution of
the underlying grid.

Naturally, higher resolutions also result in longer computation times. However, as discussed
earlier, TISTA is a remarkably fast algorithm, so increasing the grid size can be considered a
worthwhile trade off.

6 Conclusion

TISTA is an outstandingly fast technique, yielding accurate results with a particular strength
in detecting large numbers of sources. Downsides include its dependency on training data
and a time consuming training process. However, the methods employed in this work do not
necessarily represent actual use cases and further research is required to assess the fitness of
TISTA.
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