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Abstract

For the assessment of noise reduction measures on aircraft and aircraft engines, flyover
measurements are necessary to provide a realistic estimation of their effectiveness. The use
of microphone arrays improves the ability to localize the sources and quantify the noise
levels of different components of the aircraft. The department of Engine Acoustics at the
German Aerospace Center uses a hybrid approach, where in the first step, a delay-and-sum
beamforming (CBF) is executed in the time-domain followed by a deconvolution, similar
to DAMAS, in the frequency domain. While the algorithm used at DLR relies on the
assumption of broadband sources, where the loss of energy from one frequency band to
neighboring bands can be assumed to equal to the gain from these bands, this may not hold
true of tonal sources and requires a new approach. While good results can be achieved
with the current approach for practical applications, this paper investigates the feasibility
of interconnecting neighboring frequency bands in the deconvolution step and the resulting
benefit in the localization of tonal sources from fly-over measurements.

1 INTRODUCTION

This papers aim is to show how an interconnection across frequencies of the deconvolution
problems can be accomplished. This makes the deconvolution suitable for tonal sources, which
were so far neglected by the hybrid deconvolution method proposed by [4, 6]. For this, we
will first derive the point spread function of moving sources across neighboring narrow band
frequencies. The presented model will take the properties of the spectral analysis into account
without the need of numerically performing a costly fourier transform as in [2]. We will then
give an estimate of the computational cost of the deconvolution for the full problem across
frequencies and discuss the feasibility of this approach. Further, we want to derive a method
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using a priori knowledge of the frequencies with tonal components where a limited number
of neighboring frequency bands are considered. These methods will be applied to simulations
representing flyover measurements.

2 Method

2.1 Beamforming formulation in the time domain

The classical sum-and-delay approach for source localization with phased microphone arrays is
a well established method and can be applied both the time and the frequency domain. When
using it to focus on a potential source position, the recorded pressure signals pm(t) at the M
microphones are delayed, amplified and averaged to reconstruct the source signal. In general,
the content of the microphone signals that does not originate from this source position is sup-
pressed.

While not a requirement to the general approach, the source terms are usually modelled as
point sources, often monopoles. They can easily be arranged in a scanning grid. The resulting
sound levels at the grid points give an indication of the source distribution.

Forward Model for Moving Sources

In many applications of phased microphone arrays, the classical approach is applied in the fre-
quency domain, where the delay translates to a phase difference. For a time-dependent acoustic
source, which includes sources moving along a trajectory ~xs(t), the delay-and-sum method is
typically applied in the time-domain, where the movement can be easily taken into account.

The formulation of the delay-and-sum beamforming serves as the basis of the propagation
model for the deconvolution, presented in the following sections. To introduce the notation, a
short derivation is provided here.

Qs(τ) represents the signal associated with a monopol at position ~xs(τ). In this context τ is
used to signalize that the position and the signal both are evaluated at emission time.

To express the component of a microphone signal attributed to Qs(τ), the Green function
for moving monopoles can be used to analytically describe the pressure at a fixed microphone
position in the farfield as

ps(~xm, t) =
Qs(τsm)

rsm(τsm)|1−Msm(τsm)|
, (1)

. where rsm(τ) = |~xm−~xs(τ)| describes the distance between microphone m and source s [3].
The emission time τsm = τsm(t) is a function of the reception time t and the solution of

τsm = t− |~xm−~xs(τsm)|
c

= t− rsm(τsm)

c
. (2)

To improve readability, the explicit notation for the time dependency is omitted. For subsonic
linear movement, this solution is unique and can be found analytically.

Msm(τ) is the observer Mach number, which is defined by the projection of a Mach vector
towards the microphone position
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Msm(τ) =
〈~xm−~xs(τ),~vs(τ)〉
|~xm−~xs(τ)|c0

= M cos(θsm) , (3)

with~vs(τ) being the velocity of source s and θsm is the angle between~vs(τ) and (~xm−~xs(τ)).
Furthermore, we define

Tsm(τ) =
1

rsm(τ)|1−Msm(τ)|
=

Dsm(τ)

rsm(τ)
(4)

as the attenuation coefficient due to the propagation and source velocity.
To obtain delay-and-sum beamforming for a given focus point~x f (τ), the delay and attenua-

tion of the given propagation model are inverted for each microphone and then averaged:

yBF(~x f ,τ) =
M

∑
m=1

wmT−1
m f (τ)p(~xm, tm f ) , (5)

where the reception time

tm f = tm f (τ) = τ +
|~xm−~xs(τ)|

c
(6)

is the inverse function of the previously defined function τ f m(t). wm are weighting factors
for each microphone and add up to one. They can be adjusted depending on the microphone
position and the analyzed frequency range. In the easiest case of uniform weighting wm = 1/M

holds true for each microphone.

Spectral Analysis

In most applications, the resulting beamforming signal yBF(~x f ,τ) is not examined directly in
the time domain but transformed into a frequency spectrum.

For practical purposes, Welch’s method can be used [11]. For this, the examined total time
interval gets segmented into D subintervals of shorter duration T . The autopower spectrum
of each segment is then averaged. Since a reduced interval duration causes a lower frequency
resolution, this effectively sacrifices frequency resolution for better statistical properties.

Y BF(~x f , fl) :=
1
D

D

∑
d

∣∣∣Fτ

{
h{d}T (τ)yBF(~x f ,τ)

}
( fl)
∣∣∣2 (7)

=
1
D

D

∑
d

∣∣∣∣∣Fτ

{
h{d}T (τ)

M

∑
m=1

wmT−1
m f (τ)p(~xm, tm f )

}
( fl)

∣∣∣∣∣
2

. (8)

Here h{d}T (τ) is a window function of width T and centered around τ
{d}
0 , so that h{d}T (τ) = 0

for
∣∣∣τ− τ

{d}
0

∣∣∣> T/2. This effectively masks the operating space of the Fourier transform to the

interval τ ∈
[
τ
{d}
0 − T

2 ,τ
{d}
0 + T

2

]
indexed by d, which is the desired underlying instrument of
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Welch’s method. The frequency resolution is defined by ∆ f = 1/T . Thus, the frequency-space
is discretized to values of fl = l∆ f , l = N.

While digital signals are discrete in time, a continuous representation is convenient at this
point. It is assumed that the signal is bandlimited and sampled with a sufficiently high sampling
rate to prevent aliasing.
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Figure 1: Beamforming results of a monopol at altitude 200 m and vx = 80m/s. The source is
a tonal source with 1 kHz and 100 dB. The line array consists of 101 equally spaced
microphones, For demonstration purposes, the geometric setup replicates the beam-
forming pattern in [5].
The chosen time segment of a total length of 0.88 s scans the source right over the
array, with the emission angle interval ranging from 80◦ to 100◦. The spectral analy-
sis was done with FFTs of 13 overlapping subsegments, each with a length of 0.125 s,
resulting in a frequency resolution of ∆ f = 8Hz. The segments where weighted with
the Hann window function.

2.2 Deconvolution Methods

The sum-and-delay approach is robust and well described. However, it does suffer from
a limited spatial resolution [7, 8]. It can be easily shown that focusing on a point source(
~xs(t) =~x f (t)

)
correctly reconstructs the original signal, as long as no or only weaker sources

are in the vicinity. When focusing on positions or trajectories that are not aligned with the real
source, the determined power at these positions is generally suppressed but not zero. This ef-
fect is referred to as the imaging properties and depends on the geometric setup, the examined
frequency and the positions~xs and~x f . It can generally be described as a convolution of the real
source strengths with the point-spread-function, which describes the linear impact of source s
(with frequency fk) on the beamforming result at a grid position or focus point f . It leads to
a limited resolution of the method. Especially at low frequencies, real sources close to each
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other can not be separated but appear as one source. Great care must be taken when interpreting
sourcemaps of complex source distributions.

An established family of methods for obtaining a higher resolution sourcemap are called
deconvolution methods [1, 6]. Taking a model for the point-spread-function, they aim to find a
source distribution that closely reproduce the sum-and-delay beamforming results.

Typically, that includes a linear problem of the shape

AX = Y , (9)

where the system-matrix A ∈ RF×S represents the point-spread-function, Y ∈ RF a vector of
the sum-and-delay beamforming results for each focus point f and X ∈RS the unknown source
strength. When the same grid is used for computed source strength and the modeled ones, this
yields a quadratic system of linear equation that can be solved e.g. iteratively.

It must be noted that the point-spread-function for stationary sources of a given frequeny only
re-distributes the power within one frequency band, i.e.

PSF
(
~x f ,~xs; fl, fk

)
= 0 for fl 6= fk . (10)

This enables the computation of the deconvolution separately for each frequency band, as de-
scribed in eq. (9).

However eq. (10) is not true for moving sources however. The frequency shift due to the
Doppler effect is improperly corrected when scanning the grid on positions away from the real
source distribution. This causes a shift in frequency, depending on the source and trajection of
the focus point (see Fig. 1).

Different schemes have been proposed to address this. Guérin and Weckmüller [6] introduced
a hybrid scheme for moving sources, where the beamforming and spectral analysis are executed
as described in section 2.1. Furthermore they argue, that this error can be neglected for broad-
band sources. This approach has successfully been the base of several applications of flyover
measurements [4, 9, 10]. When applying this scheme to tonal sources, it can neither correctly
locate the source in space nor in frequency (see Fig. 2). Some following works considering the
effect of the movement on point spread functions have been added by the authors [5].

More recently [2] proposed a deconvolution that takes the point-spread-function across fre-
quencies into account. For the calculation, repeated FFTs are necessary, which come with a
significant computational cost.

2.3 A New Propagation Model for Moving Sources

The proposed approach takes not just the array geometry and source positions into account, but
also considers the properties of the next elements of the process chain. It does so without costly
Fourier transform by a analytic evaluation of the windows used for the spectral analysis.

For the derivation of the point-spread-function, we model a source at position~xs(t) as a sum
of discrete, equally spaced frequency components fk = k∆ f k/T ,k ∈ {1, ...,K}

Qs(τ) =
K

∑
k

As;ke j2π fkτ . (11)

The amplitude As;k is the amplitude of source s ∈ {1, ...,S} at frequency fk. The microphone
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Figure 2: Results of the hybrid deconvolution as described by [6] results of the simulated source
of Fig. 1. As this deconvolution does not consider the interconnection of frequencies,
it is unable to resolve them and correctly locate the tonal source, both in space and
frequency. The amplitude at x = 0m and f = 1000Hz is underestimated with 96.2 dB.

signal p(~xm, t) is the sum of the propagated signals of all sources, defined in eq. (1).

p(~xm, t) =
S

∑
s

ps(~xm, t) =
S

∑
s

Tsm(τsm)
K

∑
k

As;ke j2π fkτsm , (12)

Inserting eq. (12) into eq. (5) yields the time-domain beamforming definition

yBF(~x f ,τ) =
M

∑
m=1

wmT−1
m f (τ)

S

∑
s=1

Tsm(τsm)
K

∑
k=1

As; fke j2π fkτsm

=
S

∑
s=1

K

∑
k=1

M

∑
m=1

wm
Tsm(τsm)

Tm f (τ)
As; fke j2π fkτsm ,

(13)

where τsm = τsm
(
tm f (τ)

)
, with τ being the emission time at the focus point and τsm being

the emission time at the assumed source.

Y BF
f ;l =

1
D

D

∑
d

∣∣∣Fτ

{
h{d}(τ)yBF(~x f ,τ)

}
( fl)
∣∣∣2

=
1
D

D

∑
d

∣∣∣∣∣ S

∑
s=1

K

∑
k=1

M

∑
m=1

wmAs; fkFτ

{
h{d}(τ)

Tsm(τsm)

Tm f (τ)
e j2π fkτsm

}
( fl)

∣∣∣∣∣
2

(14)
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To motivate a linear relation between the power
∣∣As; fk

∣∣2 of each frequency component and the
resulting spectra at the focus points Y BF(~x f , fl) = Y BF

f ;l , the sources are assumed to be mutually
incoherent. This allows rewriting eq. (14) as

Y BF
f ;l =

S

∑
s

K

∑
k
|As; fk |

2 · 1
D

D

∑
d

∣∣∣∣∣M

∑
m

Tsm

Tf m
Fτ

{
h{d}T (τ)e j2π fkτsm

}
( fl)

∣∣∣∣∣
2

=
S

∑
s

K

∑
k
|As; fk |

2PSFf s; fl fk .

(15)
This shows the desired factor to be

PSF f s;lk =
1
D

D

∑
d

∣∣∣∣∣M

∑
m

Tsm

Tf m
Fτ

{
h{d}T (τ)e j2π fkτsm

}
( fl)

∣∣∣∣∣
2

. (16)

Because of the dependency τsm = τsm
(
tm f (τ)

)
, caution must be taken when evaluation the

Fourier term. To avoid a costly numeric evaluation of the Fourier transform, one can make some
approximations, starting with expressing τsm as a Taylor Series of second degree

τsm
(
tm f (τ)

)
≈ τsm

(
tm f

(
τ
{d}
0

))
+
(

τ− τ
{d}
0

)
∂τsm

∂ tm f
∂ tm f

∂τ
, (17)

centered around τ
{d}
0 for each interval. Both terms can be efficiently approximated, the first

being

τsm

(
tm f

(
τ
{d}
0

))
= τ

{d}
0 +

r f m

(
τ
{d}
0

)
− rsm(τsm)

c

≈ τ
{d}
0 +D f m

(
τ
{d}
0

) r f m− rsm

c
, (18)

the composite derivative as

∂τsm

∂τ

(
τ
{d}
0

)
=

∂τsm

∂ tm f

∂ tm f

∂τ

(
τ
{d}
0

)
≈

1−M f m

1−Msm
=

Dsm

D f m
. (19)

If no explicit emission time is indicated, the values are evaluated at τ
{d}
0 , i.e.

r f m = r f m

(
τ
{d}
0

)
.

This allows the definition of a phase difference

ϕ
{d}
f sm;k = 2π fkD f m

r f m− rsm

c
(20)
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and a instantaneous frequency

f̂ {d}f sm;k = fk
Dsm

D f m
(21)

due to the Doppler effect. Evaluating the Fourier transform results in a convolution of the
window function in the frequency domain. As the Fourier transform of the approximated signal
contains only the doppler shifted frequency, the convolution can be easily determined:

Fτ

{
h{d}T (τ)e j2π fkτsm

}
( fl)≈ e jϕ{d}f sm;kFτ

{
h{d}T (τ)e j2π f̂ {d}f sm;k

}
( fl) (22)

= e jϕ{d}f sm;kH{d}T ( fk)∗δ

(
fl− f̂ {d}f sm;k

)
(23)

= e jϕ{d}f sm;kH{d}T

(
fl− f̂ {d}f sm;k

)
(24)

This yields the modeled PSF as

PSF f s;lk :=
1
D

D

∑
d

∣∣∣∣∣M

∑
m

Tsm

Tf m
e jϕ{d}f sm;kH{d}T

(
fl− f̂ {d}f sm;k

)∣∣∣∣∣
2

(25)

and the underlying linear system of equations

S

∑
s

K

∑
k

PSF f s;lkXs;k = Y BF
f ;l , (26)

which can be easily rearranged into a system matrix and column vectors.

3 Application to flyover measurement data

When solving the linear system of eq. (26) for a scanning grid with high spatial resolution and
all available frequencies, limits of computational feasibility can quickly be reached. The num-
ber of elements of the point spread function increases quadratically with both the number of
considered frequencies and the number of grid points. Assuming the grid contains 10000 points
and the frequency range goes up to 8000 Hz (with ∆ f = 8Hz), PSF f s;lk contains 1.6×1015 ele-
ments. This number is too high to handle computationally, let alone solve for Xs;k. We propose
an a priori approach, where at first knowledge about the tonal sources is collected with a decon-
volution per frequency. The deconvolution across multiple frequencies can be greatly reduced
when applied only to neighboring bands of the expected tonal source. A coarse evaluation of
the point-spread-function can then be used to determine the band width to consider.

This method was chosen in Fig. 5. Inspecting the modeled point spread function (Fig. 4)
shows little to no effect outside the frequency range of 900 Hz to 1100 Hz. The deconvolution
of this deliberately simple example with 301 points and 25 spectral lines was computed eas-
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Figure 3: The new system matrix of the deconvolution problem calculated with eq. (25). The
setup corresponds to the flyover described by Fig. 1. Each block represents a fre-
quency pair fs, f f , with fs = f f on the diagonal. The displayed frequencies range
from 904 Hz to 196 Hz.
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Figure 4: The modeled point spread function of a single virtual source located at the center of
the grid, with fs = 1000Hz. The values in this plot represent a single column in the
system matrix (Fig. 3).
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ily. 56625625 elements of the point spread function had to be computed and were taken into
account for solving eq. (26).
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Figure 5: The results of the deconvolution using the new propagation model. The system matrix
of Fig. 3 was used. The frequency range considered in the deconvolution was 904 Hz
to 196 Hz. The computed level at the center point at 1000 Hz is 99 dB.

4 Conclusion

In this contribution, a new propagation model for the deconvolution of moving tonal sources
has been presented. Based on previous works by Guérin and Weckmüller[5], the new model
also takes the spectral analysis into account. By including this essential processing step of
the delay-and-sum beamforming, the new model promises to more accurately predict source
positions and strengths on the beamforming map. The method was comprehensibly derived and
simplifications and assumptions were depicted when used.

Limits of the interconnection of the deconvolution approach across the whole spectrum were
discussed. A simple simulation and successful application demonstrate the general feasibility
when the tonal components of the sourcemap are contained within a limited bandwidth.

We aim to further research the capability of the model for use with real fly-over measure-
ment data. A focus will be on the ability to separate closely distributed tonal sources and the
robustness of the method.
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