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Abstract

In the last few years, acoustic cameras have become increasingly compact and perfor-
mant. In order to compete with existing products, new contenders on the market must
provide high-end features at low costs. This paper introduces a low-latency noise acous-
tic camera prototype for transient source localization, in partnership with the company
Mecanum. It features a 10 channels I2S MEMS microphone antenna coupled with time-
domain localization techniques based on GCC-algorithm, an integrated depth-sensing cam-
era and a GPU-based architecture on a mobile board (Nvidia Tegra X2). First, the choices
of components are detailed. Then, the architecture and development details are provided.
A few performance examples and preliminary experimental results are also shown. Finally,
future challenges in the development of the product are addressed, as this project is a work
in progress.

1 INTRODUCTION

Noise reduction is an important objective for modern societies. Deafness problems related to
prolonged exposure to noise are not only a public health issue, but are increasingly becoming an
economic issue. In fact, in 2018 in Quebec, ear, mastoid or hearing disorders represented 70.2%
of occupational disease cases opened and accepted for compensation at the provincial occupa-
tional health and safety office [5]. But people may also be exposed to noise in their everyday
life whenever they are in the presence of means of transportation or household, resulting in a
deterioration of quality of life. Many consumers will therefore make noise a selection criterion
when buying products, especially in the automotive field [6]. In any case, in order to be able to
effectively reduce environmental noise, it is necessary to be able to diagnose its causes, or more
precisely determine and reduce the impact of problematic noise sources.
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A very common method in the field of sound source localization is the use of microphone
arrays [1]. Many variations have been developed over the past decade to adapt the method to the
requirements of various environments, whether in terms of microphone number, type and loca-
tion, antenna size, or the type of electronic platform used for data acquisition and processing.
However, commercial microphone arrays are often expansive, bulky and require to be handled
by trained acoustic technicians, since care must be taken to ensure proper microphone place-
ment and calibration, and specialized processing software often needs to be used to obtain a
valid imaging result. In addition, technical knowledge is very often required to understand the
results properly.

More and more microphone arrays are now being combined with cameras to form ”acoustic
cameras”. These offer the advantage of making diagnosis easier for untrained people by super-
imposing the results of acoustic imaging on the image filmed by a camera. However, the user
still has to specify the distance of the acoustic source from the camera, which is a technical
calibration step. The goal of this project is to facilitate access to acoustic cameras for small and
medium-sized enterprises by designing a compact, inexpensive and easy-to-use product. More
specifically, in partnership with the acoustic company Mecanum, we aim to create an acoustic
camera that can perform real-time measurements by automatically detecting the depth of the
imaging points grid. The camera could thus be used to localize transient noise sources. This pa-
per presents the first developments of this project. Section 2 details the conception requirements
based on previous research, section 3 describes the integration of the different components and
the current challenges we are facing, and section 4 shows a few preliminary results with our
prototype.

2 CAMERA CONCEPTION

Some attempts have been made previously in the development of acoustic cameras with depth
detection. For example, Iyama et al. [3] have used a Microsoft Kinect to determine clusters
corresponding to objects identified by the camera. The user can instruct the camera to focus on
one or more specific clusters and perform imaging only around the centroid of each cluster. This
method is well suited when used for surveillance cameras, for instance, but is less appropriate
for locating sound sources in a complex environment because of its poor space resolution.

Some studies have also demonstrated the use of an artificial depth-sensing acoustic camera.
Ding et al. [2] performed imaging on several 2D planes parallel to their camera plane and
determined the depth of the source from the maximum value found. Thus, they do not use
depth detection as such. Moreover, the camera still requires input from the user, who must
specify the depth interval to be scanned and the distance increment between planes.

In terms of real-time solutions, Vanwynsberghe et al. [7] have shown that it is possible to
use a GPU to perform very fast acoustic imaging. In our case, the imaging algorithm used
is defined in the time-domain and the Generalized Cross-Correlation with Phase-Transform
(GCC-PHAT) solution is retained [4]. This algorithm requires the definition of a measurement
grid and the computation of the distance between each point of the measurement grid and each
microphone of the antenna. Since we aim at using depth detection to determine the points on
the measurement grid, and since the coordinates of these points fluctuate with each video frame,
we have to be able to recalculate the distances in less than 50 ms in order to achieve a target of
20 frames per second (fps). An architecture based on the use of a GPU is promising to achieve
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this goal, as it is a simple calculation that must nevertheless be repeated for each pixel and for
each microphone pair; the ideal type of calculation for a GPU.

For this reason, it made perfect sense to choose a depth sensing camera running on the GPU
of a given platform. This is specifically what the Stereolabs ZED camera does. This camera was
designed to be used in virtual reality devices. It has two ”eyes” that can recreate the 3D point
cloud of an environment using the difference between the images provided by each camera.
The calculations are performed on the GPU of a compatible platform to which the camera is
connected via a USB 3.0 bus. The point cloud can then be retrieved by the user via a Python
library developed by the company. Its maximal frame rate depends on the resolution chosen by
the user; for instance, a 720p resolution comes with a maximal frame rate of 100 fps, which is
five times greater than our target.

The platform selected to manage the camera is NVIDIA’s ”computer-on-a-chip” Jetson TX2.
This supercomputer has a 256-core GPU architecture, 8 GB of RAM and runs on an adapted
version of Ubuntu. It can also accommodate up to 6 I2S inputs, but for now, as we are currently
working with the development version of the board, only two I2S channels are easily accessible
via GPIO headers. In these inputs, we are using chains of up to 16 ICS-52000 microphones
from Invensense. These are digital MEMS microphones that can be used in TDM mode that
theoretically allows to daisy-chain up to 16 microphones over a single channel. However, we
have designed a modular PCB design that restricts us to a maximum of 11 microphones per
channel at first, because the clocks become too noisy when the microphones are too far apart.

3 CAMERA DEVELOPMENT AND CHALLENGES

Figure 1 represents the desired steps and relations between the camera components to obtain an
image. The duration of each step of the acquisition is detailed in Table 1. These numbers were
obtained with one channel of 10 microphones recording 1024 samples at a time. The imaging
is done on a grid of 672×376 pixels. The total computation time for a frame is 336 ms, which
is visibly greater than the target of 50 ms, and would be even greater if more microphones were
used. However, there are a few solutions proposed to reduce the computation time. First, some
specific calculation steps (denoted by a * in Table 1) could be performed on the board’s GPU
rather than on the CPU in future developments. Also, the acquisition of the microphone/camera
data, as well as the GCC calculations are done sequentially for now. These operations could
eventually be performed in separate processes using multi-threading, as they are intrinsically
independent. This solution would also allow for a better synchronization of the RGB image and
the acoustic image.

Another challenge of this project is the synchronization of the different microphone channels.
Digital MEMS require a fast clock (SCLK) and a slow clock (WS). The fast clock indicates
when to write each bit of data, while the slow clock indicates which microphone in the channel
should be writing to the data bus. These clocks are generated by the board, but are not the same
from channel to channel. A ”master” channel must then be designated, and its clocks have to
be physically linked to those of all the other channels, which then become its ”slaves”. It is
also necessary to perform a whole gymnastics of modification of the pinmuxes at the hardware
level internally and to route the different sound cards appropriately to recombine the channels
together at the software level. For now, the prototype used to obtain the results in the next
section uses only one channel of 10 microphones.
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Schéma de l’acquisition

Frame 0 Frame 1 ...

Microphones

Computing 
platform

Camera

Display

10 channels
× 1024 samples

3D point cloud

RGB image

RGB image + 
colormap

16 channels
× 1024 samples

3D point cloud

RGB image

RGB image + 
colormap

GCC GCC

Figure 1: Acquisition of an image. Each frame must be completed in less than 50 ms to achieve
a frame rate of at least 20 fps.

Table 1: Computation time for each step of an image acquisition. A * indicates that this step
would take less time to complete if performed on the GPU.

Step Duration (ms)
Microphone data acquisition 21
Camera data acquisition 5
*Calculation of the distance between each point of the measuring 105
grid and each microphone
*Calculation of correlations between each single pair of microphones 150
*Conversion of the results to colors and addition to the RGB image 55
TOTAL 336

4 MEASUREMENT RESULTS

Some preliminary measurements were made with the prototype. The microphones were
mounted on a flat screen and positioned as shown in Fig. 2. The measurements were made in
an anechoic room using two loudspeakers located at two different distances and driven by two
uncorrelated white noise. The noise sources were calibrated to produce a Sound Pressure Level
(SPL) of 64 dB at the center of the camera.

Figure 3 represents the depth map of the room as seen by the ZED camera. The speakers are
detected at the correct distance from the camera with a very small error (below 0.01 m). The
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depth of some pixels (white contours in Fig. 3b) could not be measured by the camera due to
irregularities, and normally occurs close to the contours of objects. For these grid points, the
GCC calculations are simply not performed.

Figure 2: Prototype of the camera. The 10 microphones PCBs are visible in green. The PCB in
the bottom left links the microphones to the Jetson board (not shown in photo). The
two eyes of the camera are visible in black in the center of the picture.

(a)

Measured : 1.23 m
Real : 1.22 mMeasured : 2.63 m

Real : 2.64 m

(b)

Figure 3: (a) Experimental setup. Only the left and right speakers were used. (b) Depth map of
the setup as rendered by the ZED camera. Distances to the center of the speakers as
measured by the camera are indicated; real values were measured with a tape.

Figure 4 shows the source localization results when different combinations of speakers are
active. It can be seen that the camera detects accurately the presence of each source, even
when the two speakers are driven at the same time. In this case, a 0.1 dB discrepancy between
both sources is measured, confirming the sensitivity of the imaging. This shows that the depth
camera allows the user to detect the presence of two sound sources at different distances
without their location having to be specified to the algorithm.

In the following steps of the project, the distance between each source and the microphone
array will be compensated, allowing the estimation of the source level at its origin. Moreover,
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Figure 4: Image obtained by the acoustic camera when (a) only the left speaker is driven (b)
only the right speaker is driven (c) both speakers are driven.

the correlation between source level and 3D image plot may enable new possibilities in terms of
3D mapping of enclosed spaces or for acoustic characterization of complex noisy environments.

5 SUMMARY

The developed acoustic camera prototype is compact, cost effective and works autonomously.
It can measure about three frames per second and identify the presence of noise sources without
the need for the user to enter any parameters. Many challenges will have to be solved for the
rest of this project, but these first steps in the development suggest that it should be possible
to reach the targeted fps by configuring multiple I2S channels in order to increase the number
of microphones, performing the calculations in separate processes and properly exploiting the
board’s GPU in order to increase the number of frames per second. When this is achieved, tran-
sient noise sources could be localized effectively as the camera would be able to continuously
spot them using its depth map.
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