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Abstract

Deep learning and Neural Networks strategies have become very popular in the last year
as tools for image and data processing. In acoustics, neural network-based approaches
have been typically used to recognize audio patterns, but more recently some authors ap-
plied deep learning to localize multiple-sources exploiting the grid-based approach typical
of sound source localization methods or to filter/improve acoustic maps obtained by more
traditional techniques like conventional beamforming. This paper wants to propose the use
of artificial neural networks (ANNs) for identifying (localization and quantification) multi-
ple sound sources in a grid-less way. The approach uses the microphones Cross-Spectral-
Matrix (CSM) as input to the network and provides as output both the location and strength
of sources contributing to the acoustic field. The grid-less strategy targets improving spa-
tial resolution and computational efficiency. The proposed solution is discussed here just
on simulated data for assessing its accuracy and sensitivity.

1 INTRODUCTION

Acoustic imaging has represented an important branch of acoustics since the ’70s, in which
the first beamforming algorithms was applied to this field. Since then, different algorithms and
approaches have been developed. Their level level of complexity has also increased, benefiting
from the improvement in data acquisition and computer computation performances. A quite
comprehensive review of these techniques is presented in [5] where the main beamforming
algorithms dealing with the source identification, starting from the very basics and progressing
to more advanced concepts and techniques, are presented, also reporting practical examples
referring to different applications. In [13] a review of the most well-known and state-of-the-art
acoustic imaging methods are presented; however, the focus there is mainly on aeroacoustic
applications.
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No matter the approach addressed, all acoustic imaging methods are based on direct/inverse
relations between microphones of the array and target points of potential sources located on a
grid. The spacing between these points also identifies the accuracy in identifying the locations
of the noise sources. This means that the true location of sources is highly dependent on the
grid design. The method proposed in this paper is a first attempt to overcome this limit. With
the intention of exploiting hidden patterns and regularities in Cross Spectral Matrices, this work
proposes a neural-network-ensemble methodology for estimating both positions and strength of
sound sources in a grid-less approach. This method is particularly targeted to those applications
in which fixed microphone array installations are used, e.g. aeroacoustic testing. Indeed, once
training of the neural-network model is performed, the identification of source locations and
strengths can be performed in quasi-real time with accuracy comparable to the one of deconvo-
lution or inverse approaches, which contrarily usually need long computing time.

As for the use of neural networks and deep learning in acoustics, despite several papers have
been issued (see, for instance, [3, 6, 17, 20, 21], just to cite some), very few relates to acoustic
imaging. Indeed, just few examples can be found in literature. In [9] Kujawski examines
whether the use of deep neural networks can lead to an accurate characterization of single
point sources from microphone array data. Starting from conventional beamforming maps,
the proposed method filters out the map in order to extract the source location with sub-grid
accuracy. The source coordinates are thus obtained, together with their respective strengths. The
application takes advantage from the residual network architecture, a well-established model in
the field of image recognition.

In [4] Chen proposes a two-step method for real-time multiple-source direct localization by
modular neural network. In this method, the area of interest is divided into multiple sub-areas
and Multi-Layer Perceptron (MLP) neural networks are employed to detect the presence of a
source in a sub-area and filter sources in other sub-areas, while radial basis function (RBF)
neural networks carry out the position estimation.

In [11] the first example in which a neural network approach is used to directly process micro-
phone array data for acoustic mapping is presented. The complex Cross Spectral Matrix is fed to
a convolutional neural network (CNN) and the training is performed considering the source dis-
tribution as the output. There is no need of providing any propagation function and microphone
positions in advance, nor any knowledge of the physical meaning of the experiment. Although
sidelobes may appear in some situations, the proposed technique takes advantage from the very
high computing speed with respect to traditional methods. Even if the idea might be promis-
ing, their results are yet unpractical, presenting output maps with a very rough resolution of a
10×10 point grid.

2 MATERIAL AND METHODS

The neural network model proposed in this paper is based on a Multi-Layer Perceptron approach
targeted to regression: given a set of input-output continuous variables, the task of the model is
to predict new continuous outputs given new statistically independent input data.

The basic component of neural networks is the artificial neuron. This is a simple operation
unit that has weighted input signals A1,A2, ...,AN and bias θ , and produces an output signal u
through the activation function f (v). All the weights and bias are summed and given as input
for the activation function, according to equation (1):

2



8th Berlin Beamforming Conference 2020 Castellini et al.

u = f (
N

∑
j=0

Wj ∗A j +θ) (1)

where Wj is the j-th input weight. The activation function can be linear or non-linear and
determines the output of the artificial neuron. Commonly, non-linear activation functions are
used in order to combine the inputs in more complex ways. The activation function fixes the
output value boundaries and determines the neuron activation threshold. The choice of the
activation function is based on the type of problem that is being model led. Then all the neurons
are arranged into layers of neurons and multiple layers are arranged into a neural network. The
weights, that are usually randomly initialized, are trained by a back–propagation algorithm,
which is a supervised learning technique [15, 16, 18].

The model proposed in this paper, shown in fig. 1, is based on a MLP architecture with six
hidden layers, with Rectifier Linear Unit (ReLU) and Linear activation functions.

Figure 1: Multi-Layer Perceptron model

The input to the network is a modified Cross Spectral Matrix (CSM). The CSM matrix C is
at first rearranged to avoid redundancy and then collapsed into a one dimensional array. Being
Hermitian in nature, and being the main diagonal usually removed in aeroacoustic applications
(towards which this algorithm is particularly targeted) as it contains microphones self-noise,
the CSM can can be transformed in a new square matrix Ĉ ∈ R of M×M. This is obtained as
represented graphically in fig. 2. In fact, the CSM is split in its real and imaginary parts and
then the two parts combined to create a new matrix Ĉ organized as follows: the upper triangular
part of ℜ(C) becomes the upper triangular part of Ĉ, while the upper triangular part of ℑ(C)
becomes the lower triangular part of Ĉ. The main diagonal is set to zero.

Location and strength (amplitude and phase) of the acoustic sources are given as outputs for
training the model. The ReLU activation function is given by equation (2) and even with a
domain ranging from −∞ to +∞, the output can not assume negative values. ReLU usually
helps the model learning non-linear interactions and effects, and several works demonstrate
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Figure 2: Pre–processing scheme.

significant gains in final system accuracy and training efficiency [7, 12, 19].

f (v) =

{
0, for v < 0
v, for v≥ 0

(2)

Since the problem is modeled for regression, outputs are unbounded, so a Linear activation
function for the output layer is chosen. The Linear activation function is given by equation (3)
and ranges from −∞ to +∞, consequently the output can assume any value.

f (v) = v (3)

The input CSM Ĉ is standardized according to equation (4), where ckl is the k, l element of Ĉ,
and µ and σ are respectively Ĉ mean and standard deviation, in order to have a mean of 0 and
a standard deviation of 1. Standardizing inputs is useful when non–linear activation functions
are applied and it helps avoid getting stuck in local optimal points [1, 10].

ĉ′kl =
ĉkl−µĈ

σĈ
(4)

Five different models are trained in order to predict:

• (x1,y1), the location of the first strongest sound source.

• (x2,y2), the location of the second strongest sound source.

• q2, the module of the strength of the second strongest sound source.

• (x3,y3), the location of the third strongest sound source.

• q3, the module of strength of the second strongest sound source.

4



8th Berlin Beamforming Conference 2020 Castellini et al.

Mean Squared Error is used as loss function, which is defined as:

L(u− û) =
1
N̂

N̂

∑
j=0

(û j−u j)
2 (5)

where û j and u j are the predicted and simulated values of the j-th output and N̂ is the total
number of simulation performed.

The performance of the approach is tested on a simulated data set. The data set was created
considering M = 64 microphones arranged to form a Voegl spiral according to the following
equation (polar co-ordinates):

r = R
√

m
M

φ = 2πm
(1+
√

V )

2

(6)

with R = 0.5 and V = 5. The variable m represent the m-th microphone of the array.
One million of cases were simulated with three sound sources, all emitting at 4 kHz, in

each case. The location of these sources was varied in the range [-0.5 m; +0.5 m] in x and y
coordinates to comply with a uniform random distribution. The strength of the three sound
sources was also normalized with respect to the source with the maximum strength and varied
to have uniform distribution in a dynamic range of 20 dB. Acquisition noise at microphone
locations was simulated by considering additive and multiplicative noise [2, 14] as a certain
Signal-to-Noise Ratio (SNR). The simulated input data were then split into Training, Test and
Validation sets in a ratio of 8:1:1 for the training phase. Weights were initialized randomly.
The batch size was set to 5000 and the number of epochs to 50. The Adam optimizer was used
with default settings as reported in [8].

3 RESULTS

The five MLP models obtained from the training process of the simulated data were validated
with a further set of simulated data (N = 100000), statistically independent from the data-sets
used for the training phase.

Fig. 3 shows the loss curves of training and validation for the five models considered in terms
of Mean Squared Error over epochs. It can be seen that good convergence is obtained for the
models within the epoch’s range adopted.

The statistical distributions of the location errors for the three sources, as well as the errors
in terms of sound power levels LW (obtained from source strengths) for the second and third
source, are reported in Fig. 4. The errors in sound power levels are reported in terms of dB,
since they are calculated as ratio between the sound power of the current source and the sound
power of the strongest source (acting as dB reference). It is well evident the Gaussian nature of
the distributions, the centering around zero mean as well as the absence of skewed behaviors.

To further prove the efficacy of the approach proposed, Table 1 also reports the average values
and the standard deviations of the distributions of Fig. 4. The standard deviations related to the
error locations increase for the second and and third source up to approximately 1.5λ and 2λ .
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Figure 3: Simulated test case: Model Loss curves over epochs - first source position (a); second
source position (b); second source strength (c); third source strength (d); third source
position (e).

Table 1: Simulated test case: prediction Errors average and standard deviation values for the
three sources

Source 1 Source 2 Source 3
x[m] y[m] x[m] y[m] LW [dB] x[m] y[m] LW [dB]

Average 0.005 -0.001 0.006 -0.004 -0.03 -0.005 -0.015 -0.09
Std. Dev. 0.079 0.083 0.129 0.135 0.73 0.189 0.189 2.29
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Figure 4: Simulated test case: Histograms of prediction errors for the three sources

4 CONCLUSIONS

This paper presented a novel neural-network based grid-less Sound Source Localization
approach. The neural model receives as input the Cross-Spectral Matrix associated to the M
microphones of the array, once it is re–arranged to a non-redundant, real matrix (M×M in
size).
The neural approach is based on MLP class, and provides as output the locations of multiple
sources and the strengths of the sources with respect to the strongest one. The performance of
the whole approach was discussed on simulated data. Sources were located with great accuracy
as well as the strengths of the weaker sources were well identified with respect to the one of the
strongest source.
The aim of the paper was to present a preliminary study on this novel approach, and further
tests are surely needed to prove its applicability in real world scenarios. However, we think
this method could be helpful in those experimental conditions in which the same array
arrangement is used, like in aeroacoustic wind tunnel testing. Once the models are identified,
data processing, given the grid-less nature of the method, is extremely fast and can pave the
way to real-time acoustic imaging.
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