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Abstract

The localization of acoustic sources using acoustic imaging methods such as acoustic
beamforming can be limited by the Rayleigh resolution limit at relatively low frequencies
and the output of these methods may also produce spatial aliasing images referred to as
sidelobes, particularly at high frequencies. To date, there are very few Deep Neural Net-
work (DNN) applications for acoustic imaging to help alleviate some of these issues. In
this study, we developed several DNN models using DenseNet-201 with a training strategy
specifically designed for an acoustic imaging task. The DNN method is able to recog-
nize the pattern behind microphone array signals for different source positions, by using
the real-component of the cross-spectral matrix of the received pressure vectors at the mi-
crophone positions. DNN models with both a fixed and random number of input sources
are simulated for a range of specific frequencies. The DNN model with a random number
of input sources is tested against conventional beamforming, CLEAN-SC and DAMAS,
revealing a far improved source localization and source strength estimation. These DNN
models represent a very promising proof-of-concept for the use of DNN models in the field
of acoustic imaging.

1 INTRODUCTION

Aeroacoustic sources, such as aircraft landing gear [6, 34], small-scale drones [38] and airfoil
trailing edge noise [3], have gained significant attention in recent years leading to deeper re-
search into the fundamental mechanisms responsible for their noise generation. Quantification
and localization of the acoustic source regions are important stages in understanding the noise
generation and thus the accurate mapping of sound sources in wind tunnel environments attracts
considerable interest. Conventional beamforming (CB) [8, 17] is a popular and robust method,
yet the acoustic maps it generates potentially suffer from spatial aliasing images (sidelobes)
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and poor resolution between acoustic sources defined by the Rayleigh resolution limit [26, 30].
Furthermore, the array design can be responsible for the quality of the acoustic source map,
due to various acoustic frequencies and locations of the source relative to the source plane of
investigation [4]. Various post-processing techniques have been developed to localize all possi-
ble sound sources and to significantly clear the acoustic map of sidelobes, such as CLEAN-SC
[33], DAMAS [5, 27] and several other variations [15, 23]. One of the challenges of the existing
acoustic imaging methods is the inability to resolve complicated sound source distributions, es-
pecially at low frequencies where the main lobe of an acoustic source can dominate the acoustic
source map as a result of the Rayleigh resolution limit. Using an adaptation of CLEAN-SC,
namely adaptive High-Resolution CLEAN-SC (HR CLEAN-SC), Luesutthiviboon et al. [24]
were able to resolve acoustic sources that would be otherwise unable to be resolved using CB
(beyond the Rayleigh resolution limit) yet this was achieved using an in-house optimized array
design.

Due to the rapid development of computational power in recent years, Deep Learning (DL)
[21] has become an emerging field of research in a wide range of applications. Specifically
to this study, it potentially provides a fresh perspective to tackle existing problems in acoustic
imaging, such as CB. The concept of DL was originated by the progress of artificial neural net-
works, where Hinton [13] proposed the concept of a Deep Neural Networks (DNN), attracting a
tremendous amount of attention due to its remarkable performance for pattern recognition even
with very limited labeled data [21]. The process of DL involves observing the characteristic or
representation of data by each layer, among which a higher layer continues to learn from a lower
layer. By learning or training DNNs, they are able to approximate such complex relationships
within the data that could not be achieved otherwise.

The remarkable capability of DNNs has led to their use in a wide range of applica-
tions in mechanical systems and acoustic signal processing, such as machine health moni-
toring [10, 19, 32, 39], speech enhancement [1, 7], acoustic source localization under water
[16, 18, 28, 36], bioacoustics [2, 11, 37] and many others. In regards to acoustic source local-
ization, Vera-Diaz et al. [35] employed a convolution neural network for indoor acoustic source
localization of a single source using a microphone array and Niu et al. [28] applied residual
neural networks [20] using extremely large data sets (often referred to as big data) to locate
broadband acoustic sources using a single hydrophone in an ocean environment. Despite these
DNN applications, these studies do not reveal details of source distribution, including position
and strength of multiple sources, which is the aim of this study. Based on an extensive search
of recent literature as of 2019, Ma et al. [25] has applied a DNN method for acoustic imaging
of multiple acoustic sources using an array of microphones, which is analogous to CB. They
were able to achieve good performance in predicting three dispersed point sources of frequen-
cies 3000 Hz and 8000 Hz by training convolutional neural networks yet due to the spacing of
these sources and their frequency, they were not able to reveal any improvements in acoustic
source resolution relative to the Rayleigh limit that restricts CB [26] but showed in most cases
identical results to DAMAS.

In this paper, we propose a novel acoustic imaging method based on a densely connected
convolutional network (namely DenseNet) [14] with a specifically designed training strategy.
DenseNet is one of the most sophisticated DNN architectures with many compelling advan-
tages. For example, in machine learning the vanishing gradient problem is a difficulty found
in training neural networks with gradient-based learning methods and back propagation [31].
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In some cases, the gradient, which is used to update the weights of the neural network, will be
vanishingly small, and effectively prevent the weight from updating. DenseNet is able to alle-
viate this vanishing-gradient problem by constructing tight ensembles of many short networks
together. In a standard convolutional network [22], input features pass through multiple convo-
lution stages and obtain higher-level features. But in DenseNet, each layer obtains additional
inputs from all preceding layers and passes on its own feature maps to all subsequent layers.
The network becomes thinner and compact due to each layer receiving feature maps from all
preceding layers and thus the number of parameters is substantially reduced.

A proposed DenseNet-based acoustic imaging method is presented. By training a DNN
model with significant amounts of simulated acoustic source data that radiates toward a 64-
channel logarithmic spiral microphone array that spans over a 1 m area, the DNN model is
developed such that it is capable of locating single and multiple sources over a wide frequency
range, commonly observed in aeroacoustic applications (200 Hz to 20,000 Hz) located 1.2 m
from the array plane. The model is tested with a challenging acoustic source distributions,
ranging from one to twenty-five acoustic sources over a 1 m × 1 m area. The DNN model
locates these sources with minimal sidelobe contributions and acoustic source resolution that
well exceeds the restrictions of the Rayleigh limit. A thorough investigation of the parameters
that comprise the DNN model are also presented, such as the introduction of a Mean Absolute
Error (MAE) to help quantify the errors in source localization quantification in acoustic source
imaging. The MAE is seen to converge with increasing DNN training time for each acous-
tic source frequency investigated and its variation with number of acoustic sources within the
map is also discussed. Overall, the DNN model presented here possesses far greater source
resolution, accuracy and sidelobe characteristics than CB, CLEAN-SC and DAMAS.

2 Densely Connected Convolutional Networks

Generally speaking DNNs contain input layers, hidden layers and output layers where each
layer is built with multiple neurons (units). In order to train a DNN model, a loss function is
computed that measures the error (or distance) between the output and the true values. The
machine then modifies its internal adjustable parameters to reduce this error by using a weight-
ing function, w, for each connection between the units. The entries of w are real numbers that
define the input-output function of the machine. For each unit k the output ak [14] is defined as

ak = F

{
∑

i
aiwki + ε

}
, k = g,g+1, . . . ,K (1)

where F is an activation function (see Eq. (9) for an example), i is the upstream unit index, wki
is the weight of each path connecting unit k per i-th connection and ai is the output of the i-th
unit from upstream. The term ε is a small threshold constant, g is the number of input units and
K is the total number of units in the model.

To help explain Eq. (1), an illustrative example of a multilayer neural network [21] is pre-
sented in Fig. 1. The open circles represent the units, the lines connecting the units represent
the information transfer between units and the vertical column of units represents a layer. Every
unit in the input layer (denoted as k = 1 to 8) sends information to the every unit in the first
hidden layer (denoted as k = 9 to 14) via a complex web of connections. In Fig. 1 the unit k =
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15 is arbitrarily highlighted to reveal its upstream connections, illustrated as blue lines. It can
be seen that for k = 15 that the I(k) has six elements, as there exist six upstream connections for
k = 15. Each of those connections have weights w15,i, where i = 9 to 14.

 

Input layer
Two hidden layers

Output layer

unit k = 15, with value a15

generated by 6 upstream connections:

9→15, 10→15, … , 14→15

each with weights w15,i (i = 9 to 14)
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k = 1

k = 2

…

k = K = 19
…

…

…

…

k = 8

k = 9

k = 14

k = 18

k = 15

Figure 1: Illustrative example of a multilayer neural network, showing the various layers within
the DNN required to achieve the output layer. In this basic example, K = 19 and the
unit k = 15 is highlighted in blue to help illustrate the concept of Eq. (1). Only
two hidden layers are depicted here for illustrative purposes; DNNs typically can use
hundreds of hidden layers (refer to Table 1 for the hidden layer architecture used in
this study).

From the basic illustrative example in Fig. 1, it can be seen that a DNN model with hundreds
of hidden layers and input layers consisting of hundreds of units that the number of computa-
tions between each unit can be immense and that the selection of an appropriate DNN model
for the behavioral dynamics to be investigated (in this case acoustic imaging) must be selected.
Recently Huang et al. [14] introduced a unique type of DNN model, namely the Dense Con-
volutional Network (DenseNet). This unique DNN model ensures that the maximum possible
information flow between the layers in the network is achieved, and that every layer is con-
nected directly with each other. This leads to the advantageous consequence that DenseNet has
fewer network parameters during computation relative to other network architectures. There-
fore, based on the clear advantages of its network structure and its well-recognized performance
the DenseNet-201 architecture (where 201 denotes the number of layers within the DNN model)
is employed in this study for acoustic imaging.
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3 Simulation Methodology

A comparison between acoustic imaging using a DNN and existing acoustic beamforming tech-
niques is presented in this study and this section details the simulation methodology. Firstly
the principles of acoustic beamforming are introduced, as the synthetic data generation for the
DNN model follows the spherical wave propagation equation needed for acoustic beamform-
ing sound source generation and steering vector formulation. The DNN model architecture is
then explained based on the array sizes and dimensions of the acoustic data produced from the
synthetic noise generation required for acoustic beamforming.

3.1 Acoustic Beamforming

Multiple spherical (monopole) wave sources, s, of unit source strength in still conditions are
simulated. The propagation of a wave from each acoustic source s to a microphone m on an
array plane (where m = 1 to M) can be represented as ps(m), which is a complex pressure (Pa)
in the frequency domain defined as

ps(m) =
e−j2π f rs/c0

4π |rs|
(2)

where c0 is the speed of sound in air (343 m/s). The vector rs links the simulated source s loca-
tion to each of microphone m in the array plane. The total pressure contribution at microphone
m due to s sources is calculated via the sum of the sound propagation of each source (Pa)

p =

{
s

∑
1

ps(1),
s

∑
1

ps(2), . . . ,
s

∑
1

ps(M)

}
(3)

where p is an M×1 vector that is used to produce a Cross-Spectral Matrix (CSM), C [17, 26],
which is an M×M matrix (Pa2) defined as

C = ppH (4)

where H represents the complex transpose and conjugate. The beamforming output is calculated
over a square-planar discretised grid of N data points (herein referred to as the scanning grid) at
a known distance from the array, z, positioned in line with the center of the microphone array.
Steering vectors, v̂, relate the propagated pressure from an assumed scanning grid point source
to each microphone, m. One possible and commonly used steering vector formulations for the
mth microphone is an N×1 array defined as

v̂ =
e−j2π f rm/c0

4π |rm|
(5)

where rm is the vector between the scanning grid point to the microphone m. The cross-spectral
beamforming output (i.e., the output of CB, Y ) [5] is computed using

Y (v̂) =
v̂HCv̂

M2−M
(6)
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The scanning grid in this study is a square grid of N points on a plane, located z = 1.2 m
from the array plane. The distance between two points in the x- and y-directions are the same
and are referred to as ∆x. To remove any concerns regarding the quality of an array design,
when the DNN performance is of chief importance in this study, a typical logarithmic spiral
array possessing M = 64 channels is used here [4, 9, 29]. The array spans an approximate 1
m × 1 m area with an aperture of D = 1.03 m. To ensure that the array performs well over
a range of frequencies (from approximately frequencies f = 800 Hz to 20,000 Hz), a densely
spaced region of microphones is required near the array geometric center (for high frequency
performance) and some microphones are required near the array outer perimeter (a maximized
aperture assists low frequency performance) [4, 29]. The array design and a schematic diagram
representing the array location relative to the source plane are presented in Figs. 2(a) and (b),
respectively.

 

(a) (b) 

z = 1.2 m 

| x |= 1 m 

Scanning grid area:

1 m  1 m with
N-scanning grid 

points

Array plane: z = 0 m

Steering vectors: rs
Simulated 

source at 
(x,y,0)

Example scanning 

grid point: rm

Microphone positions

| y |= 1 m 

Figure 2: (a) Logarithmic-spiral array pattern containing M = 64-channels used for the acous-
tic beamforming and DNN synthetic data generation (b) Schematic diagram repre-
senting the beamforming array plane and scanning grid dimensions.

The source resolution performance of an acoustic beamformer output can be estimated by
comparing its resolution against the Rayleigh Resolution Limit (RRL) which represents the
angular resolution for an optical system [30]. For the case of acoustic imaging based on Fig.
2(b) it can be represented as a length term (m)

RRL≈ 1.22z
c0

f D
(7)

where it is assumed that z >> RRL to satisfy a small-angle approximation (sinθ ≈ θ ). It
can be seen that the spatial resolution of CB will therefore be proportional to z and inversely
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proportional to f . Consequently we define a dimensionless parameter directly related to the CB
output, namely the Rayleigh Resolution Ratio (RRR) as

RRR =
∆x

RRL
(8)

To provide the best comparison between acoustic beamforming and DNN acoustic imaging,
we apply the well-known deconvolution methods CLEAN-SC and DAMAS to Y to minimize
sidelobe contributions and reduce the main lobe width of the acoustic source. These results are
compared against CB and the output of the DNN acoustic imaging model.

3.2 DNN Model

In this study, we employ the typical architecture of a DenseNet-201 DNN model as developed
by Huang et al. [14]. The input layer, classification layer, and output size of DenseNet are
adjusted according to the input feature of microphone array signal and resolution of scanning
grid. Due to recent advances of the DenseNet method, it has been implemented successfully
in discovering intricate structures in high-dimensional data and thus can be applied to obtain
microphone array data and relate the information into sound source locations.

Input Feature

The same procedure to simulate acoustic sources for typical acoustic beamforming array design
[4] is used here. The pressure contribution at each scanning grid point is calculated as the sum of
each simulated pressure vector p defined in Eq. (3). For the purpose of comparison between the
acoustic imaging methods, the microphone array is also identical to the array used for acoustic
beamforming calculations and so is the relative position of the scanning grid plane to the array
plane, z = 1.2 m.

Due to the convenience of synthetic data-set generation, we apply a dynamic training data
strategy. The ground truth of the DNN model (i.e., the value which the DNN model is trained
upon) is defined as q0, which is the randomly generated source strength (each source possesses
equal source strength) over the scanning grid (N× 1 vector). The acoustic propagation of the
q0-sources towards the array plane produce pressures p detected by each microphone m (which
allows us to predict the received microphone signal of a random sound source distribution). The
sparseness of q0 (i.e., how many sources exist in the scanning grid) varies per DNN model, as
discussed in Section 4.

The CSM is chosen to be the input feature of the proposed DNN model due to its ability
to reveal the intrinsic structure of the microphone array signals. From extensive preliminary
testing, it was revealed that the real-component of the CSM was the simplest term that contained
sufficient information required to conduct DNN training. Thus the DNN model input feature is
ℜ{C}.

The training data is input in batches, referred to as an epoch. In each epoch the DNN uses
512-unique randomly generated source patterns (i.e., 512-unique q0 vectors) to optimize the
weighting functions w within the hidden layers based on gradient [14]. Once this training is
complete, another randomly generated set of 512-unique q0 vectors are produced and are used
as the input layer. This allows the training data-set to dynamically grow as the model continues
to fit data and produce a massive number of acoustic source patterns to be learned by the DNN
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model. Typically several thousand epochs are run to train the DNN model, which is discussed
in detail in Section 4.1.

Hidden Layers

There are 199-hidden layers (= 201−Input layer−Output layer) between the input and output
layers and they are presented in Table 1. The pooling layers represent a sample-based discreti-
sation process [12], the objective is to down sample feature maps by summarizing the presence
of features in patches of the feature map and the Dense Block is a set of convolutional layers. In
Table 1, a 1×1 conv means a convolutional layer with a 1×1 kernel size [22] and subsequently
a 3× 3 conv means a convolutional layer with a 3× 3 kernel size. The term 3× 3 max pool,
stride 2 refers to a max pooling layer with 3×3 kernel size and striding 2 steps each time. These
parameters are consistent with Huang et al. [14]. The activation function F in Eq. (1) used here
is simply a Rectified Linear Unit (ReLU) activation function, such that

F(ak) =

{
ak if ak ≥ 0
0 if ak < 0 (9)

Table 1: Typical architecture of DenseNet-201 (using a growth rate of 32) [14] showing each of
the hidden layers between the input and output layers. Each conv layer shown in the
table corresponds to the sequence Batch Normalization (BN) - ReLU - Convolutional
layer.

Hidden Layers Output Size DenseNet-201
Convolution 112×112 7×7 conv, st ride 2
Pooling 56×56 3×3 max pool, stride 2

Dense Block (1) 56×56
[

1×1 conv
3×3 conv

]
×6

Transition Layer (1)
56×56
28×28

1×1 conv
2×2 average pool, stride 2

Dense Block (2) 28×28
[

1×1 conv
3×3 conv

]
×12

Transition Layer (2)
28×28
14×14

1×1 conv
2×2 average pool, stride 2

Dense Block (3) 14×14
[

1×1 conv
3×3 conv

]
×64

Transition Layer (3)
14×14
7×7

1×1 conv
2×2 average pool, stride 2

Dense Block (4) 7×7
[

1×1 conv
3×3 conv

]
×48

Classification Layer 1×1
7 × 7 global average pool

1000D fully-connected, softmax
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Output and Loss Function

The output layer is defined as q which is the estimated source strength (Pa) over the scanning
grid (N× 1 vector). During post-processing (outside of the DNN model) to assist visualizing
the source map over a square area, this vector is reshaped into a square matrix of size

√
N×
√

N.
In neural networks, a loss function is used to examine the model prediction errors. During

the training of neural networks, the loss function will be minimized constantly by adjusting
the weights w. In this study, the term MAE is chosen to be the loss function, which is the
difference between the ground truth and the source map predicted by the DenseNet model,
divided by the maximum input strength of the ground truth (1 Pa). Therefore MAE is a singular
non-dimensional value defined as

MAE =
|q−q0|
q0,max

(10)

where q represents the mean source strength over the scanning grid predicted by DenseNet
model (Pa), q0 is the mean ground truth source strength (Pa) over the scanning grid and q0,max
is the maximum input strength of the ground truth (1 Pa). Note that the elements of q correspond
to the aK values depicted in Fig. 1. The output layer consists of N units (note that for simplicity
purposes the illustration in Fig. 1 shows only one unit in the output layer) and effectively
q = {q(1),q(2), . . . ,q(N)} =

{
aK,1,aK,2, . . . ,aK,N

}
. Note that the singular MAE value in Eq.

(10) can then be averaged over a range of test cases. In this case, the averaged MAE is referred
to as MAEav.

Model Summary

To summarize the main characteristics of the DNN model: the feature input is the real-part
of the CSM (ℜ{C}, Pa2) of size M×M, the output is the acoustic source strength q (Pa) of
size N × 1 and the loss function is the difference between the estimated source strength and
the ground truth, being the singular value of MAE as defined in Eq. 10. The input consists of
an epoch which contains 512-q0 vectors run as a batch. Once the MAE is calculated, it is then
passed back into the hidden layers to adapt the weights w, which is referred to as a training cycle
(ten training cycles are applied per epoch). Each of these terms and processes can be visualized
in Fig. 3. In this paper, a number of DenseNet models were built for different purposes and
compared with each other, all of which were trained within a few hours on two NVIDIA Tesla
v100 GPU PCs.

4 Results and Discussion

4.1 DNNs Training Convergence and Prediction Accuracy

A training epoch can be regarded as a unit of time, assuming that each epoch is of the same
size and array sparseness. It is important to determine how many epochs are required to achieve
converge of MAE, as training a DNN model with many hidden layers and large input struc-
tures can be very computationally expensive. At the end of each epoch, one-thousand (1000)
q0 vectors possessing six randomised sources (i.e., six random non-zero entries equal to one)
would be generated to validate the DNN model at this point in its training life. The values of
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Figure 3: A schematic diagram of the DNN model used in this study.

MAEav, averaged with respect to these 1000 validation data, are used to present the accuracy of
prediction of the DNN model.

Figure 4 presents the progress of MAEav with respect to the number of training epochs for
various acoustic frequencies. Each curve represents a different DNN model, trained specifically
for that acoustic frequency. It can be observed in Fig. 4 that the DNN models trained for higher
frequencies appear to converge using fewer epochs and possess lower MAEav values. This
indicates that it is easier for a DNN model to recognize and be trained using a CSM comprised
of higher frequency pressure vectors. Note this study was conducted for every DNN model over
a wider range of frequencies than presented in Fig. 4, being f = 100, 200, 300, 400, 500, 600,
800, 1000, 2000, 5000, 8000 and 20,000 Hz.

To formally quantify whether a DNN model has converged for a specific frequency, a con-
vergence criteria is introduced for MAEav defined as

MAEav,n−MAEav,n−100 < 0.001 (11)

where n represents the number of epochs simulated during training and n > 100. Using this
criterion, the number of required epochs to achieve convergence of MAEav for each frequency
were recorded and used as an end-point for DNN training.

Acoustic source maps using the DNN models are presented in Fig. 5. These maps are also
generated using 1000 randomly-generated validation data, to ensure that the source maps (i.e.,
q) are averaged and are representative of the DNN performance. The ground truth values, q0,
are varied for each frequency-specific DNN model, to showcase a wider range of the DNN
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Figure 4: MAEav recorded using 1000 randomly-generated validation data versus training
epoch. Each curve corresponds to the MAEav values of the DNN model that is trained
specifically for the frequency shown and for six random sources in q0.

source prediction capability. Note that all of the entries within q0 are either 0 or 1, so that the
ground truth source locations in Fig. 5 can simply be identified as a cyan dot. The predicted
source strengths are shown in color and their source strengths are presented in dB, normalized
to the true source strength, being unity. Recall that each of the DNN models investigated here
are only capable of localizing exactly six monopole sources with unit source strength at one
specific frequency.

In Figs. 5(f) through 5(i) both the source location and strength are perfectly estimated, corre-
sponding to f = 2000 Hz to 20,000 Hz, respectively. Excellent acoustic imaging performance at
higher frequencies is relatively common, especially with the use of CLEAN-SC and DAMAS
upon post-processing CB data, Y . These methods can typically resolve the acoustic sources and
significantly reduce any sidelobes [5, 33]. The key observation from Fig. 5 is the impressive
source localization capability at lower frequencies. Acoustic frequencies such as f = 200 Hz
to 800 Hz are relatively low frequencies for acoustic beamforming, assuming the parameters
D, z and |x|× |y| as defined in Figs. 2(a) and 2(b). Nonetheless, using the frequency-specific
DNN models within this frequency range, reasonable source location and strength estimation
can be observed in Figs. 5(a) through 5(d). At f = 200 Hz to 600 Hz, some of the acoustic
sources are not perfectly estimated yet the estimated source locations still indicate a source in
the true region and the map is still a reasonable representation of the ground truth. Technically
the misplaced sources are not sidelobes; they can be regarded as a slightly smeared main lobe
area, rather than an exact single source location. Note that even at f = 400 Hz every source
is located. At slightly higher frequencies of f = 800 Hz to 1000 Hz, as shown in Figs. 5(d)
and 5(e) respectively, every source is accurately located while in some cases the acoustic source
strengths are not equal to unity (and thus not equal to 0 dB). The greatest source strength error
in Fig. 5 is approximately −8 dB, as observed in Fig. 5(d).

By observation of each source map in Fig. 5 we can observe that the source map at f = 800
Hz in Fig. 5(d) presents the lowest frequency acceptable source map. This is based on the lack
of sidelobes observed and overall good quality sound source strength quantification. At f =
600 Hz as shown in Fig. 6(c), the source map is still reasonable yet the smearing of the main
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Figure 5: Application of the DNN model to locate various acoustic point sources for a range of
different frequencies, with results presented at (a) 200 Hz to (i) 20,000 Hz. Each map
possesses six acoustic sources at unique positions and the dB scale is defined relative
to a unit strength source. The scanning grid consists of N = 15×15 = 225 points.

lobe at x = −0.3 m and y = 0.3 m makes it unsuitable, which is a conservative estimate. By
assuming that f = 800 Hz is the threshold for high quality DNN model performance, we can
then determine an MAEav allowable upper limit.

An investigation of MAE with respect to each DNN model trained for a specific frequency
was conducted where the frequency was converted into a RRR value using Eq. (8), as presented
in Fig. 6. It can be observed that the MAEav of each DNN model decreases with respect to
RRR. Similarly, each MAEav value was calculated using 1000 randomly-generated validation
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data. At 0.012 < RRR < 0.212, the MAEav values are seen to slightly decrease with frequency
yet there are significant changes of MAEav beyond this RRR range. It appears that RRR ≈
0.12 is a RRR cut-off value for the DNN models investigated here in terms of MAEav. A fitted
curve of MAEav and RRR for 0.012 < RRR < 0.212 is included, showing that there exists an
inverse relationship between these parameters. Note that the constant of this empirically fitted
relationship would specific to the conditions, such as ∆x,D and z.

0.01 0.1 1 4
10

-4

10
-3

10
-2

10
-1

Figure 6: A curve of converged MAEav values with respect to RRR. Each data point represents
a DNN model that is specifically trained for corresponding RRR frequency. Each
MAEav value is calculated using 1000 randomly-generated validation data with six
sources in q0. The data are calculated based on ∆x = 1/15 m. A fitted curve between
MAEav and RRR is shown as a dashed line.

Values of RRR ≥ 1 imply that the acoustic sources can be well resolved via acoustic beam-
forming techniques. If RRR < 1, it would be difficult to accurately calculate the acoustic source
distribution by conventional beamforming methods. As ∆x = 1/15 m and z = 1.2 m are fixed
in Eqs. (7) and (8), the resolution between acoustic sources can only be improved at higher
frequencies via conventional methods. By basing the lower frequency threshold at f = 800 Hz
(RRR = 0.11), we see that the corresponding MAEav value is 5× 10−3 which represents the
upper limit of acceptable DNN model performance. This also implies that high quality DNN
model performance occurs at a frequency that is approximately one order of magnitude smaller
than RRL. This shows significant promise in terms of source resolution capability relative to
existing acoustic beamforming techniques.

4.2 Influence of Source Number

All of the presented DNN results have been based on a trained model using a fixed number
of sources (six sources) in q0. It is important to determine the influence of the source number
(i.e., the number of non-zero entries in q0) on the performance of the DNN output, q and thus
MAEav. To conduct an analysis of MAEav with varying source number, Ns, a DNN model was
made for a specific number of sources Ns. These models, namely fixed input DNN models,
were trained for a single specific frequency to reduce overall computation time. In addition, a
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more complex DNN model was created that can localize a random number of sources, namely
a random input DNN model. The upper limit of sources that it is trained to detect is twenty-five
(25). This model, while much more complex to simulate, provides a much more realistic and
practical DNN model, as the number of sources to be investigated can rarely be known prior
to conducting experiments. It is important to determine a specific frequency that represents the
challenge of accurately estimating q0 for both of the models. By observation of Fig. 5, f =
800 Hz was selected, as it revealed primarily accurate source localization and yet not a perfect
estimation of the source strengths.

Figure 7 reveals both DNN model performances in terms of MAEav with respect to Ns. Note
that the data point at Ns = 6 for the fixed input DNN corresponds to the same data presented in
the source map in Fig. 5(d). For both models, each MAEav value was calculated using 1000
randomly-generated validation data per Ns-DNN model.
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Figure 7: MAEav curves with increasing source number Ns, using both a fixed and random input
f = 800 Hz DNN model. Each fixed input DNN data point represents a model that
is specifically trained for the corresponding Ns value whereas only one random input
DNN model is used for all Ns values presented. For both DNN models, the MAEav
values were calculated using 1000 randomly-generated validation data.

From Fig. 7 it can be seen that for both DNN models MAEav increases with Ns, which is
expected due to the increased complexity of the ground truth (fewer non-zero values in q0) and
thus the increased complexity of relaying the CSM input layer through the hidden layers of
each DNN model. Note that from MAEav alone, it cannot be determined whether the increased
difference in prediction error between q and q0 is due to errors in the main lobe width and/or
sidelobe contributions. Despite the increase of MAEav with respect to Ns, it can be seen that
the average error of each scanning grid point never exceeds 10−1 (i.e., 10%, by using acoustic
sources of unity strength). For fewer sources, the fixed input DNN yields a lower MAEav, yet
for Ns = 6 to 7, the random input DNN possesses lower MAEav values. Therefore the additional
computational requirements to produce a random input DNN model appear to be justified. Note
that this comparison is only conducted at a single frequency of f = 800 Hz. The ultimate goal,
and will be future work, is to develop a random input DNN model for a frequency range. This
model will require significant computational power to train and create yet it will be a far more
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practical and robust alternative to the models presented in this study thus far.
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Figure 8: Application of the random input DNN model to locate various acoustic source distri-
butions at f = 2000 Hz for different source numbers, Ns (a) 1, (b) 6, (c) 15 and (d) 25.
The dB scale is defined relative to a unit strength source. The scanning grid consists
of N = 15×15 = 225 points.

The random input DNN model is now tested over a range of source locations and source
numbers at f = 2000 Hz, as presented in Fig. 8. This model differs from the fixed input
DNN model in that a randomized number of sources are simulated such that the model has no
prior knowledge of the number of sources to detect, thus depicting a more realistic acoustic
testing scenario. Four cases are considered, where one (1), six (6), fifteen (15) and twenty-five
(25) sources are simulated and tested, as presented in Figs. 8(a), (b), (c) and (d), respectively.
Figure 8(a) reveals that for a simple single source case, the source is accurately located without
any sidelobes. Despite the accurate source localization, the DNN model has not accurately
estimated its true source strength (the true source strength is 0 dB whereas it is estimated as
−13 dB). Such misrepresentation of the acoustic source strength is less noticeable for the more
realistic, multiple source cases, such as in Fig. 8(b) where all six sources are accurately located.
The source strength values vary from 0 dB to−6 dB and the only observable error is some main
lobe smearing at x =−0.5 m and y = 0.2 m. This is due to the proximity of the two sources that
are located within 45◦ to each other, leading to some spreading of the source location over an
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adjacent scanning grid point. Increasing the number of simulated sources to fifteen, as revealed
in Fig. 8(c), shows on average excellent source location capability of the randomized DNN
model. Two sources exist near the center of the scanning grid, that are estimated by a single
source that is approximately equispaced between them. All of the other sources are accurately
estimated yet some of the sources near the lower part of the scanning grid show some distortion.
The acoustic source strengths are well captured and range from 0 dB to −6 dB. The most
complex source distribution and thus the greatest challenge for the randomized DNN model is
shown in Fig. 8(d) where twenty-five sources are simulated. It can be casually observed that
the majority of the acoustic sources are accurately located by the randomized DNN model. In
cases where the sources are not accurately located, such as x ≈ −0.25 m and y ≈ 0 m to 0.3
m, the estimated source locations lay between the true sources. It is postulated that if a more
refined scanning grid were to be used, such as a

√
N×
√

N = 50×50 grid, then some of these
sources may be more accurately estimated. To summarize, the randomized DNN model is a
more practical model for acoustic testing, in that the number of true acoustic sources will be
unknown, yet is possess a small increase in sidelobe and source estimation errors relative to the
DNN models that specifically seek a number of sources.

4.3 Acoustic Beamforming Comparison

The results using the random input DNN model are compared against the acoustic beamforming
techniques discussed in Section 3.1 to provide some benchmark against the performance of the
DNN models. Two frequencies are considered, f = 800 Hz and 2000 Hz. In Fig. 9(a), at f
= 800 Hz CB is unable to accurately locate the sources as the RRR value is much less than 1
at this frequency. By passing the CB data through CLEAN-SC, it can be observed that much
better source localization can be obtained, as shown in Fig. 9(b). Similarly, DAMAS attempts
to locate the sources as shown in Fig. 9(c). However, neither of these deconvolution methods
are capable of accurately locating the sources, with CLEAN-SC yielding the better result. The
random input DNN model however locates all of the sources accurately and only shows some
small main lobe smearing for the two adjacent sources near the center of the scanning grid,
as observed in Fig. 9(d). Clearly at f = 800 Hz, the DNN model far outperforms any of the
beamforming techniques considered here.

At f = 2000 Hz, the CB map provides a better representation of the acoustic sources as
compared to f = 800 Hz. By observation of Fig. 9(e), the CB is even able to separate the
source located near the upper-left corner of the map from the other sources. Using CLEAN-SC
at f = 2000 Hz reveals a far improved result relative to the CB map, as shown in Fig. 9(f).
Interestingly, DAMAS fails to recognize the source locations consistently as can be seen in Fig.
9(g) yet it shows some improvement relative to the result at f = 800 Hz. It is suspected that
this may be due to the relationship between the parameters D, z, f and the size of the scanning
grid |x| × |y|, that inhibits the performance of DAMAS under these conditions. The random
input DNN model again shows excellent performance, where the MAE = 0, as presented in Fig.
9(h). All of the sources are accurately located and their strengths are all 0 dB (i.e., the unit
strength has been recovered in q). While these tests reveal that the random input DNN model
can locate sources well for two different frequencies with sources scattered over a scanning grid,
the comparison between this DNN model and the beamforming techniques is only an indication
of the expected performance over a wider range of source location conditions. It is future work
to present a more comprehensive set of acoustic beamforming data over which the DNN model
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Figure 9: Comparison between (a) (e) CB, (b) (f) CLEAN-SC, (c) (g) DAMAS and (d) (h) the
random input DNN model. Images (a) through (d) are conducted at f = 800 Hz
and images (e) through (h) are conducted at f = 2000 Hz. The dB scale is defined
relative to the maximum beamformer output for the beamforming techniques, and
relative to a unit strength source for the DNN model. The scanning grid consists of
N = 15×15 = 225 points.

can be comparatively tested.

5 Conclusions

One of the challenges of conventional acoustic imaging techniques such as acoustic beamform-
ing is the difficulty of resolving complex acoustic source distributions especially at relatively
low frequencies. Deconvolution methods such as CLEAN-SC and DAMAS are capable of sig-
nificantly improving the conventional beamforming source map yet sometimes fail to recognize
every acoustic source and accurately quantify them. As an alternative to these methods, a deep
learning approach was presented in this paper. The DNN is developed from DenseNet-201,
a recently developed DNN model that has been previously implemented for large scale deep
learning models. To successfully develop a DNN model, the input feature must be clearly
defined and contain necessary information for the model to be trained. From preliminary in-
vestigations, it was found that the real-component of the CSM sufficed. This was a convenient
input feature that corresponds directly with acoustic beamforming processes. The hidden lay-
ers within the DNN model were identical to those of the previously published DenseNet-201
model. The output layer was a vector of source strengths that map to a scanning grid, presented
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in a similar manner to an acoustic beamforming result. To determine the validity of a DNN
model for acoustic imaging, a range of DNN models were created for specific frequencies rang-
ing from 100 Hz to 20,000 Hz. Using the DNN models trained for a specific frequency and for
six acoustic sources, a resolution of approximately an order of magnitude below the Rayleigh
resolution limit can be obtained which is a significant improvement from existing acoustic imag-
ing methods. Furthermore, the DNN models show superior source location capability relative
to existing acoustic beamforming methods over a range of frequencies and challenging source
distributions. A random input DNN model was also created that was capable of locating a ran-
dom number of sources between one and twenty-five with no prior inputs defining the expected
source number, which acted as a significant challenge for the DNN model.

The presented results are very promising but are not a completed work. Future work will in-
clude developing a more generalized DNN model that is capable of detecting a random number
of sources for a range of acoustic frequencies. The current model can detect a random number
of sources but must be only trained for a single frequency. As there are several key parameters
that define the performance of acoustic beamforming (such as the array aperture, distance of the
source to the array plane, number of microphones, etc) much more work is required to develop
a complete DNN model. Nonetheless, the results presented in this study show a significant
improvement in this current field of study and serve as a promising proof-of-concept.
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