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ABSTRACT 

Nowadays acoustic source localization and imaging by using microphone arrays has 
been widely studied and applied in speech tracking, mechanical noise diagnosis and 
aeroacoustic quality evaluation, etc. Conventional beamforming method is a practical and 
robust tool that can quickly obtain the position and strength of acoustic sources based on 
phased microphone array, but imaging resolution is very limited for middle frequencies in 
low SNR. Though compressed sensing technique can significantly improve the resolution 
by adding sparse regularisation, but it hardly performs quite well in low Signal-to-Noise 
Ratio. Therefore, this paper proposes a Bayesian compressed sensing beamforming to 
overcome the above challenges. A student-t prior is employed to enforce the sparse 
distribution of acoustic monopole source. And background noise can be adaptively 
attenuated by modelling the conjugate prior distribution. The hyper-parameter estimation 
is not very time-consuming thanks to variational Bayesian approximation. Through 
simulated and experimental data, our proposal is validated to achieve fast and super-
resolution imaging in low SNR and middle frequencies.  

1 INTRODUCTION 

Acoustic source localization is a key technology that is widely used in many fields, such as  
aeronautics, non-destructive examination and vehicle manufacture. Through the analysis of 
acoustic pressure signals measured by phased microphones, spatial position and energy 
distribution can be obtained for an acoustic map.  Several localization approaches have been 
developed over last decades to make acoustic imaging more accuracy and robust[1, 2]. The 
beamforming is the most universal, robust and simplest method. Nevertheless, the result 
obtained by beamforming is always blurred by the sidelobes, which can be interpreted as the 
convolution effect by the Point Spread Function (PSF) of microphone arrays. In order to 
overcome the beamforming limitation caused by PSF, the deconvolution and regularization 
approaches are proposed to improve the resolution of acoustic imaging and accuracy of source 
strengths. Representative algorithms include Deconvolution Approach for the Mapping of 
Acoustic Sources (DAMAS) and compressive sensing beamforming [3, 4]. But usually these 
state-of-the-art methods require a lot of computing resources for iteratation and optimization. 
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Recently, Bayesian method provides new framework to solve such problems and some 
Bayesian regularization methods have been applied for acoustic imaging successfully [5, 6]. 
     Inspired by the advantages of Bayesian methodology, in this paper, our aim is to propose a 
Bayesian sparsity regularization method based on the assumptions of non-stationary noise. 
Concretely, a Bayesian prior framework is proposed based on the physical background of 
acoustic distribution, then the Variational Bayesian Approximation (VBA) is implemented to 
solve the inverse problem in a fast and robust way. 
     The rest of this paper is organised as follows: In the section 2, the detail of the forward 
physical model is given, then VBA algorithm is proposed to solve the inverse problem. 
Section 3 shows the validation of proposed method by simulations and experiments. Finally, 
Section 4 concludes this paper and proposes further prospects. 

2 PHYSICAL MODEL AND ITS BAYESIAN SOLUTION 

2.1 Forward model of acoustic source localization 

In this paper, planar arrays and monopole point source are used for theoretical analysis and 
experimental verification. Supposing array plane with M microphones and source plane with 
K monopoles respectively, and these two planes are face to face. The acoustic pressure 
received by M microphones can be expressed as follows: 

 𝒁 = 𝑨𝑺 + 𝑬 (1) 
where 𝑺 = (𝒔ଵ, 𝒔ଶ, ⋯ , 𝒔௄)் ∈ ℛ௄×௅ is the acoustic pressure at acoustic source points, 𝑨 =

(𝒂ଵ, 𝒂ଶ, ⋯ , 𝒂௄) ∈ 𝓒ெ×௄  is the propagation vector that reflect the transmission relationship 
between microphones and sources, whose element can be expressed by Green’s function. L 
denotes the number of samplings and 𝑬 ∈ ℛெ×௄ denotes the measurement noise. 𝒁 ∈ 𝒞௄×௅ 
are the measured pressures of array output. 

Supposing that acoustic source plane is divided into N grids, and each grid may represent 
where the acoustic source possibly appears. A great deal of literature [1, 2, 5] prove that 
conventional beamforming results can be expressed as: 

𝑦௡ = 𝒂௡
ᇱ 𝒁𝒁ᇱതതതതത𝒂௡ ‖𝒂௡‖ଶ

ସ⁄ (2) 
where  (∙)ᇱ denotes conjugate transpose and (∙)തതത denotes average value, n is the index of N. 
The imaging of conventional beamforming is a contaminated result because it seldom takes 

account of the relationship between different beams, which is the PSF of microphone arrays. 
The deconvolution and regularization methods take this into consideration and get a clearer 
image. After computing the PSF of different scanning grids and mapping PSF into a 
measurement matrix 𝑯 ∈ ℛே×ே, then the forward model of convolution can be expressed as 
compressed sensing model as follows: 

𝒚 = 𝑯 𝒙 + 𝒆 (3) 
     where measurement matrix 𝑯 has the item ℎ௜,௝ = (𝒂௜

ᇱ𝒂௝)ଶ ‖𝒂௜‖ଶ
ସ⁄ ; 𝒚 = (𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦ே)் ∈

ℛே×ଵ is the result of conventional beamforming, and 𝒆 ∈ ℛே×ଵ is measured noise. Hereafter, 
the research target is to solve an inverse problem ill-posed by Eq. (3) so as to get accuracy 
imaging solution 𝒙 = (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥ே)் ∈ ℛே×ଵ. 
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2.2 VBA approach for the solution of inverse problem 

2.2.1 Conjugate prior settings 
Different from deconvolution and regularization methods, Bayesian approach assigns 

proper prior distributions for the unknown values based on physical characteristics of research 
objects. Considering the non-stationary and sparsity characteristics of acoustic monopole 
distrubtion, we assign Student-t prior on 𝒆 and  𝒙 [7]. Thanks to the Infinite Gaussian Scaled 
Mixture (IGSM) property of Student-t distribution as follows: 

𝒮𝓉൫𝑥௝ห𝜈൯ = න 𝒩൫𝑥௝ห0, 1 𝑢௝⁄ ൯𝒢൫𝑢௝ห 𝜈 2⁄ , 𝜈 2⁄ ൯𝑑
ஶ

଴

𝑢௝ (4) 

where 𝒩 and 𝒢 denote Gaussian and Gamma distribution respectively. 𝑢௝  is the inverse of 
variance of Gaussian distribution. 𝜈  is degrees of freedom for Student-t distribution. 
ℐ𝒢(𝑣|𝛼, 𝛽) denotes inverse Gamma distribution, whose Probability Density Function (PDF) is 
ℐ𝒢(𝑣|𝛼, 𝛽) = 𝛽ఈ𝑣ିఈିଵ𝑒ିఉ ௩⁄ Γ(𝛼)⁄ . Γ(𝛼) denotes Gamma function. Therefore, the following 
hierarchical model is proposed: 

𝑝൫𝒙ห𝑣௙൯ = 𝒩(𝒙|0, 𝒗௫),   𝑝(𝒗௫) = ෑ 𝑝 ቀ𝑣௫ೕ
ቁ

ே

௝ୀଵ

= ෑ ℐ𝒢 ቀ𝑣௫ೕ
ቚ𝛼௫బ

, 𝛽௫బ
ቁ

ே

௝ୀଵ

(5) 

Similar to 𝒙, noise 𝒆 has the similar prior structure as follows: 

𝑝(𝒆|𝑣௘) = 𝒩(𝒆|0, 𝒗௘),   𝑝(𝒗௘) = ෑ 𝑝൫𝑣௘೔
൯

ே

௜ୀଵ

= ෑ ℐ𝒢൫𝑣௘೔
ห𝛼௘బ

, 𝛽௘బ
൯

ே

௜ୀଵ

(6) 

Under such prior conditions, the joint posterior probability becomes as: 
𝑝(𝒙, 𝒗௫, 𝒗௘|𝒚) ∝ 𝑝(𝒚|𝒙, 𝒗௘) 𝑝(𝒙|𝒗௫) 𝑝൫𝒗௫ห𝛼௫బ

, 𝛽௫బ
൯ 𝑝൫𝒗௘ห𝛼௘బ

, 𝛽௘బ
൯ (7) 

Then the joint posterior probability in Eq.(7) can be solved by proposed VBA approach in 
the following subsections. 

2.2.2 Posterior solution by VBA 
Normally the formula deduced by Eq. (7) can be solved in two general methods at least, 

Joint Maximum A posterior (JMAP) and VBA. However, it’s not easy to apply JMAP to 
solve Eq. (7) because of large number of hyper-parameters and non-linear inversion. 
Considering the universality of the solution, the VBA is used for approximating posterior 
solution under the Kullback-Leibler (KL) divergence. The core of VBA is to separate the joint 
posterior into the products of separate probability distributions for each type of variables:  

𝑝(𝒙, 𝒗௫, 𝒗௘|𝒚) ∝ 𝑞ଵ(𝒙)𝑞ଶ(𝒗௫)𝑞ଷ(𝒗௘) (8) 
The most important process is to minimize the KL divergence 𝐾𝐿(𝑞: 𝑝) to optimize the 

combination of 𝑞ଵ(𝒙), 𝑞ଶ(𝒗௫) and 𝑞ଷ(𝒗௘). To make full use of the analytical properities of 
conjugate prior, Gaussian distribution and Gamma distribution are preferred to choose: 

⎩
⎪
⎨

⎪
⎧

𝑞ଵ(𝒙)  = 𝒩(𝒙|𝝁௫, 𝒗௫) 

𝑞ଶ(𝒗௫) = ෑ ℐ𝒢 ቀ𝑣௫ೕ
ቚ𝛼௫ೕ

, 𝛽௫ೕ
ቁ

௝

𝑞ଷ(𝒗௘) = ෑ ℐ𝒢൫𝑣௘೔
ห𝛼௘೔

, 𝛽௘೔
൯

௜

(9) 

In the above formula, the index of covariance matrix 𝒗௫ represents the diagonal elements, 
so is 𝒗௘ . The covariance 𝒗௘  and 𝒗௫  are initialized as unit diagonal matrices, other 
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hyperparameters can be initialized with random numbers. Owing to the conjugate prior, the 
joint posterior has the same style of probability distribution as the prior distribution. The 
iterative process can be expressed as follows: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝛼௫ೕ
= 𝛼௫బ

+ 0.5

𝛽௫ೕ
= 𝛽௫బ

+ 0.5 ∗ 𝒙௝
ଶ

‖𝒙‖𝟐 = ‖𝝁௫‖𝟐 + 𝑡𝑟(𝒗௫)

𝑣௫ೕ
=

𝛽௫ೕ

𝛼௫ೕ
− 1

𝛼௘೔
= 𝛼௘బ

+ 0.5

𝛽௘೔
= 𝛽௘బ

+ 0.5 ∗ 𝒆௝
ଶ

‖𝒆‖𝟐 = ‖𝒚 − 𝑯𝝁௫‖𝟐 + 𝑡𝑟(𝑯𝒗௫𝑯ᇱ)

𝑣௘೔
=

𝛽௘೔

𝛼௘೔
− 1

(10) 

Symbol 𝑡𝑟(∙) denotes the trace of matrix. After alternate optimization, VBA solution turns 
out as: 

൜
𝒗௫ = (𝑯ᇱ𝒗௘

ିଵ𝑯 + 𝒗௫
ିଵ)ିଵ

𝝁௫ = 𝒗௫𝑯ᇱ𝒗௘
ିଵ𝒚

(11) 

where the super-parameters decide the form of Student-t distribution, especially control the 
tail thickness. The longer the tail is, the more sparsity-enforcing the Student-t prior behaves, 
and the larger the dynamic range of reconstructed sources performs 

3 VALIDATION ON SIMULATION AND EXPERIMENTAL DATA 

In this section, numerical simulation and experimental data are both implemented to 
validate the proposed VBA approach. The spiral array with 56 channels is used to measure 
acoustic source at 2500Hz. The experimental conditions are kept close to the simulation, 
which are specified in Table 1. 

Table 1. Parameter settings of numerical simulation and real experiment. 

Configurations: Simulation / Experiment 

Signal types 
cyclostationary acoustic sources / 
single-frequency at 2500Hz 

Sampling frequency 50000Hz(fs) 
Number of microphones 56(M) 
Number of acoustic sources 4(K) in a cross form 

Source intensities 
83.52dB (top),   86.02dB (bottom), 
87.96dB (right), 89.54dB (left) 

Duration of sampling 1s (that is L=50000) 
Resolution of acoustic imaging 25×25=625(N) 
Distance between acoustic sources and array 1.5m / 0.75m 
Area of single grid 0.5m×0.5m=0.25m2 
Speed of acoustic propagation 340m/s 
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3.1 Validation on numerical simulation 

To make the simulation closer to experiments, 4 nonstationary monopole sources are 
arranged in a cross and non-Gaussian noise is added to measurements. Signal to Noise Ratio 
(SNR) is set as low as -5dB. The nonstationary source is modelled by cyclic amplitude 
modulation  signal in Eq. (11): 

𝑠(𝑡) = ቂ1 + ෍ 𝑏𝑖 cos 2𝜋𝑓
𝑖
𝑡ቃ ∙ 𝑐(𝑡) (12) 

where 𝑠(𝑡) is a random but cyclostationary signal emitting by each monopole related to 
Eq.(1); 𝑐(𝑡) is the carrier which has wide spectrum, for example Gaussian process; 𝑓௜ is the 
discrete frequency component which consists of the envelope spectrum of 𝑠(𝑡); 𝑏௜  is the 
amplitude of discrete frequency component. The left picture of Fig. 1 is the patten of 
microphone array. Sound Pressure Level (SPL) and positions of acoustic sources are shown in 
right picture of Fig. 1.  

Fig. 1. Spiral array with 56 channels (left), distribution of simulated acoustic sources (right). 

Then the beamforming result and proposed VBA result are shown in Fig. 2 respectively. 
Although both methods have uncertainty in the reconstruction of source intensity, proposed 
VBA method has greatly improvements in terms of positions and intensities of acoustic 
sources, compared to conventional beamforming. Reasonable sparse prior provides more 
physical information for solving inverse problem and enhances the robustness of the solution. 

Fig. 2. Beamforming result (left) and purpose VBA result (right) obtained by simulation at 2500Hz. 

y 
(m

)
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Actually, energy propagation model expressed by Eq. (3) can be represented by a 
convolution formation. Assuming that there is a spatially invariant kernel 𝒉଴ and 𝒙଴ is source-
power image with matrix form, then the relationship between energy propagation model and 
spatially invariant convolution model is expressed as follows: 

𝑯 𝒙 ≈ 𝒉଴ ∗ 𝒙଴ (13) 
Where ( ∗ ) denotes valid convolution, so that the output matrix after convolution is the 

same size as input matrix. ( ≈ ) denotes the approximation in the sense of each item from left 
side (vector form) being approximated to the corresponding one from the right side (matrix 
form). Under the simulation conditions in Table 1, the PSF can be depicted as: 

Fig. 3. 2D image and 3D stereo image of spatially invariant PSF under simulation conditions (seen in 
Table 1). 

The proposed method in this paper is able to achieve the deconvolution of blurred map 
through VBA-based sparse regularization. 

3.2 Validation on experimental data 

Experiment is implemented in anechoic chamber under the same conditions as the 
simulation conditions in Table 1 for sinusoidal acoustic monopoles. The acoustic sources are 
distributed in a cross shape and the centre of the sources plane is aligned with the centre of the 
array. As shown in Fig. 4, the distance between diagonal sources is 0.75 meters. 

Fig. 4. Practical experiment scenario in an anechoic chamber, the left is microphone array, the right 
is four loud-speakers .  
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Figure. 5 shows the blurred map reconstructed by beamforming and a clean-up map 
reconstructed by proposed VBA. Even though the intensity of 4 sources is different from each 
other, after adding the sparsity prior as sparse regularization, the energy characteristics of 
each source are enhanced by our proposal. Moreover, imaging resolution is greatly improved 
owing to sidelobe reduction. In addition, compared to deconvolution such as DAMAS, 
proposed VBA is faster and more efficient due to its analytical iteration. As for the sparse 
regularization approaches, there is less artifact originated by proposed VBA. 

Fig. 5. Beamforming result (left) and proposed VBA (right) obtained by experimental data at 2500Hz. 

4 CONCLUSIONS 

This paper transforms the beamforming model into compressed sensing problem, nd 
proposes VBA method to solve this problem efficiently. The application of VBA provides fast 
and robust solution for the posterior probability problem based on Student-t prior and its 
conjugate pair of background noise. Numerical simulation with nonstationary sources and 
experiments with single-frequency acoustic sources are given to validate the proposed 
method.  

From a profound perspective, different acoustic signals should correspond to targeted prior 
distributions, especially for nonstationary sources and non-Gaussian nosie, and there are 
expected to exploit different VBA approaches to match various prior frameworks. Therefore, 
it is necessary to explore the proper priors of different signals related to acoutical physics, 
then take full advantages of Bayesian VBA inference. 
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