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ABSTRACT 

The aim of this presentation is to give an overview of recent applications of the Bayesian formalism 

to sound source identification. The presentation will first remind the basics of Bayesian statistics and 

then demonstrate how the source identification problem can be formulated in the Bayesian framework. 

Several benefits of the approach will then be introduced. First the possibility to design an optimal 

functional basis on which to represent the sound sources to be reconstructed. Second, a mechanism to 

automize the regularization needed to solve an ill-posed inverse problem. Third, the fundamental role 

played by the prior probability distribution of the sources, which can be tuned to enforce the recovery 

of sources with pre-specified properties, such as being diffuse in space or, on the contrary, being sparse. 

Finally, the presentation will discuss some algorithmic solutions that come with the Bayesian formalism, 

in particular the EM algorithm and the Gibbs sampler, the latter being particularly useful to provide 

confidence intervals. Examples of application will be shown through case studies. 

1 INTRODUCTION 

Bayesian methods are not novel, yet they are growing in popularity in several fields. One of the 

reasons is that they provide efficient solutions in a number of practical problems, with 

significant added value as compared to “traditional” solutions. The reason of their recent regain 

of interest is undoubtedly due to the growing computational capability of calculators which, in 

particular, makes it possible to use Markov Chain Monte Carlo (MCMC) methods on a 

routinely basis for numerically evaluating the integrals that come out from the Bayesian 

formalism. However, a major difficulty with the Bayesian approach is surely its conceptual 

intricacy, especially because it is so different from the deterministic approach most of us have 

been trained with. This is particularly true in acoustics, where the use of probabilities is still not 

widely accepted. 

The aim of this conference paper is not to give a review on the Bayesian approach – on which 

a large literature is nowadays available (see e.g. [1][2]) – but rather to feature out its main 

potential when dealing with inverse acoustic problems. As a consequence, the style of the paper 

will be purposely in the form of a discussion without any mathematical technicality (which can 

be found in the list of references). 
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2 GENERALITIES ON THE BAYESIAN APPROACH 

The Bayesian approach essentially proceeds from a probabilistic formalism where all unknown 

parameters are considered as random variables [3]. This makes a fundamental difference with 

the deterministic approach most of us have been trained with since our youngest age. The idea 

is that unknown parameters may take different values depending on the quality and quantity of 

collected measurements. In this sense, random variables and their assigned probability density 

functions are to be understood from an epistemic point of view, that is as a result of one's lack 

of knowledge rather than as a consequence of a fundamental stochasticity. Interestingly, that 

was exactly the point of view that Laplace developed in his famous manuscript "Théorie 

analytique des probabilités" (1812), although he was a convinced defender of determinism. 

From a more modern perspective, considering unknown parameters as random variables may 

be understood as a way to reflect all the microstates that the parameters are allowed to take 

while still being compliant with the macroscopic description of the system. In this sense, one 

should distinguish two situations: 

1. the situation before the experiment has been run and measurements collected where the

space of possible values of the microstates is usually very large, although delimited by

some obvious physical constraints. This leads to the definition of apriori probabilities,

which is somehow reminiscent of the concept of Gibb's ensemble in statistical

thermodynamics.

2. the situation after the experiment has been run where the space of possible values of the

microstates becomes is obviously considerably restrained so as to comply with the data.

Fig. 1. Schematic 1D representation of Bayes rule. The figure shows the prior probability distribution 

of parameter c (black curve) together with the probability of observing the data p given parameter c 

(likelihood function in red). The resulting posterior distribution of c given p is shown by the black 

dotted curve and is biased towards the direction of the prior. In the case of a Gaussian likelihood, the 

maximum least square solution is denoted ||H+p|| with H+ the pseudo-inverse operator; in the case of 

Bayesian inference, the Maximum Aposteriori Estimate is returned by the maximum of the posterior 

distribution (here noted ||�̂�||). 

The benefit of the Bayesian approach is therefore its ability to encode any apriori information 

– i.e. before measurements are taken – in the form of probability distributions and to combine

it in the inference process with other types of uncertainties such as measurement noise or model

uncertainties. The final output is the aposterior probability distribution of the unknown
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parameters given the measurements (obtained from Bayes rule), from which prediction can be 

made, either in the form of point estimates or of confidence intervals. Several remarks are in 

order at this stage: 

 the fact that very different types of uncertainties (epistemic, aleatory) and errors (model,

measurements) can be accounted for in the same formalism is quite unique; this

obviously requires the acceptance of probabilities from a wider understanding than the

frequencist point of view; in particular, probabilities are allowed to exist before the

corresponding events are observed; they might even result from subjective inputs;

 the fact that the outcome of the Bayesian approach is a probability distribution

considerably enlarges the interpretation of the final results; in particular it allows the

determination of the most probable value (the so-called “maximum aposteriori

estimate”) and the dispersion of the results which serves as a useful indication of quality

in many instances;

 the distance (more exactly the “Kullback-Leibler divergence”) from the apriori

probability distribution and the aposteriori probability distribution is a direct measure

of the gain of information brought by the measurements.

3 BAYESIAN APPROACH IN ACOUSTICS 

Bayes rule of probability expresses the probability of the unknown parameters given the 

measurements as the product of the probability of the measurements given the parameters with 

the prior probability of the parameters – see Fig. 1. As such, it turns an inverse problem – 

expressing the parameters as a function of the data – into a direct problem – expressing the data 

as a function of the parameters – with explicit account of prior information. This “inverse 

probabilities” trick is particularly useful to solve some inverse problems in acoustics.  

In theory, the Bayesian approach can be applied to any inferential problem: parameter 

estimation [7][8], model updating [4], force reconstruction [5], source separation [13][14], etc. 

Its most impressive contributions are probably for force reconstruction, which is usually a 

difficult problem in acoustics because it is so severely ill-posed. Indeed, acoustical propagation 

involves a compact operator that is hardly invertible in general, or not invertible at all in cases 

where measurements are not taken continuously all over a surface that encloses the sources of 

interest. A typical example is provided by an array of microphones which samples the acoustical 

field at a finite number of spatial points. In such a situation, the space of possible values of the 

unknown parameters that describe the sources is extremely vast. The introduction of prior 

information purposely aims at reducing it by giving more “chance” to those values that are 

physically most likely. 

3.1 Specification of apriori probabilities 

A prior probability density function can be assigned to the expected magnitude of the sources 

such as to forbid abnormally small or high values. Similarly, a prior probability density function 

can be assigned to the spatial origins of the source such as to favor those regions which are most 

likely to radiate and to exclude those which are physically unlikely to contain sound sources – 

see Figs. 2 and 3. Another prior concerns the probability distribution of measurement noise and 

its covariance matrix, for which a typical choice is the Gaussian law with identity covariance. 

After application of Bayes rule, this corresponds to introducing a “data fitting term” in the form 

of a L2 norm (i.e. sum of squares). It is noteworthy that in many situations prior information is 
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included implicitly. For instance, “no apriori” on the source magnitude is still a special choice 

of a prior probability, yet in the form of a uniform law that assigns equally probable values to 

the full real line. Incidentally, many inverse methods based on least squares implicitly assume 

that measurement noise is Gaussian distributed and spatially white. Having recognized this, one 

fully understands the benefit that can be gained by properly working out the priors. A few 

examples are given hereafter. 

Fig. 1. Imposition of a spatial prior by means of a probability distribution (so called 

“aperture function”) that gives higher likelihood to regions where radiation is expected from 

and zero weighting elsewhere [6].   

3.1.1 Regularization 

By encoding the source magnitude and measurement noise with Gaussian probability 

densities, one naturally arrives at a regularized formulation of the inverse problem in 

Tikhonov’s form. There must be some satisfaction that this arrives here as a consequence of the 

Bayesian framework rather than ad hoc as is usually done. In addition, the Bayesian approach 

conveys to Tikhonov regularization parameter the physical interpretation of a signal-to-noise 

ratio plus an algorithm to compute it automatically from the data. Recent work have shown that 

“Bayesian regularization” returns significantly better results than other typical approaches such 

as GCV and the L-curve in inverse acoustics [6][16]; in particular, its solution is guaranteed by 

a global minimum (with overwhelming probability) – see Fig. 4. 

Fig. 1 : Illustration of the focalization effect due to the imposition of a narrow aperture 

function in Fig. (b) around regions of interest first identified with a large aperture function in 

Fig. (a) Erreur ! Source du renvoi introuvable..   

a) b) m/s m/s 
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3.1.2 Enforcing sparsity 

A Gaussian prior on the source magnitude tends to spread the source energy over the whole 

domain of interest. In some situations such as with compact sources this assumption might not 

be realistic and would rather be replaced by one which enforces the source “sparsity” [11][12]. 

This is easily achieved within the Bayesian framework by assigning a prior probability 

distribution with heavy tails that favors large but rare events amongst a majority of nil values. 

One such distribution is the Laplace one, which after application of Bayes rules returns a L1 

norm on which a very large literature has recently emerged in the related context of “compress 

sensing” [9]. Here again, the Bayesian framework returns an intrinsic regularization 

mechanism, although not of the Tikhonov’s type in the general case [10][17]. 

Fig. 2 : Comparison of Bayesian regularization (BA) with the L-curve (LC), the Generalized 

Cross-Validation (GCV), and the non regularized (NR) solutions on numerical simulations as a 

function of working frequency and SNR. The colorbar indicates the relative error to the optimal 

(based on known regularization parameter) solution over 500 realizations of measurement 

noise. Each row corresponds to a given distance (12, 60, and 120cm) from the array to the 

source surface Erreur ! Source du renvoi introuvable.. 
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3.1.3 Separation of different physical phenomena 

A more sophisticated prior is about the spatial correlation of the source field. If available, 

such information can be exploited to separate a specific phenomenon from other interferences. 

One example is given by the separation of weak acoustical sources from other dominant 

aerodynamic sources, a situation typically encountered in aeroacoustics. By encoding the 
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Fig. 3 : The Bayesian framework provides an intuitive understanding of sparsity enforcing 

norms recently used in acoustics. By iteratively using the previous result as a spatial prior of 

the next one, the solution is made sparse. The full family of Lp norms with 1 < p  2 can be 

explored this way Erreur ! Source du renvoi introuvable..  

Fig. 4 : Illustration as how enforcing sparsity can improve the estimation of acoustical power 

in the case of point sources. The red dotted curve displays the SPL estimated by a classical 

approach, the blue curve the SPL estimated from the Bayesian approach with sparsity and the 

black curve is the reference given by a sound intensity probe [by courtesy of T. Le 

Magueresse]. 
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former apriori with a long spatial correlation and the latter with a short one, their separation can 

be achieved in a way unapproachable by other methods Erreur ! Source du renvoi 

introuvable.Erreur ! Source du renvoi introuvable.. 

3.2 Bayesian perspectives 

The former few examples have illustrated some of the recent successes of Bayesian inference 

applied to inverse acoustic problems. Some perspectives are also very promising and should be 

listed here. 

3.2.1 Modeling error 

Inverse problems are strongly dependent on the availability of good direct models. In 

practice, this might not be often the case due to a number of simplifying assumptions. For 

instance, free field propagation in a homogeneous medium is often assumed despite the 

inevitable presence of reflections, diffraction, and medium heterogeneities. In addition, some 

important parameters such as sound celerity might not be precisely known. Accounting for 

uncertainties of the direct model in the inverse problem is an extremely difficult problem which, 

according to the author’s knowledge, has found few solutions outside the Bayesian framework. 

One advantage of the Bayesian approach in this context is to propose a hierarchical model with 

Fig. 5 : Example of blind separation of acoustical sources by exploiting the spatial covariance 

structure. a-c) Classical separation of virtual sources by eigenvalue decomposition of the 

spectral matrix, h-j) Blind separation using Bayesian inference Erreur ! Source du renvoi 

introuvable.. 
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different levels of random parameters: for instance, prior probabilities may be described by 

parameters (e.g. mean and standard deviation) which are themselves random variables [22]. 

3.2.2 Error propagation 

By construction, Bayesian inference returns aposteriori probability distributions from which 

residual uncertainties can be evaluated after collecting the measurements. A rather unique 

feature is the ability to isolate the effect of each source of error (e.g. measurement noise, 

regularization, modeling error) on the final result. At the same time, since probability 

distributions are available, confidence intervals can be easily set up by Monte Carlo 

simulations. The practice of error propagation is indeed quite easy when Bayesian inference is 

solved by means of MCMC. 

3.2.3 Non-synchronous measurements 

A fundamental limitation in source reconstruction is imposed by the limited dimension of 

the array and by the limited microphone density. A typical solution to push up these limits is to 

move the array at several sequential positions in order to cover a larger surface and/or to densify 

the measurements. This requires the use of fixed references which are in theory perfectly 

correlated with the sources (i.e. infinite SNR!) but uncorrelated with noise and not less 

numerous than the stochastic dimension of the source field (i.e. the number of virtual sources 

necessary to produce it). Within the Bayesian framework, a solution has recently been proposed 

that can cope with references of insufficient quality of quantity. It is rooted on a probabilistic 

framework that introduces latent variables to represent the missing information. First results 

have shown that the method is able to reconstruct sound sources from sequential and non-

synchronous measurement even with a very small number of noisy references. More 

surprisingly, it can even reconstruct the source field without any reference at all in some 

situations, in particular when sequential measurements are made to densify the array. This 

opens many promising perspectives for the future in a variety of applications [15][18][19][23].  

Fig. 6 :  Illustration of error propagation by MCMC. a) Point estimate of the regularization 

parameter (red curve) with its 95% confidence intervals (shaded region). (b) The reconstructed 

source spectrum (red curve) with its 95% confidence interval (shaded region) compared to the 

“true” solution (black curve) [by courtesy of T. Le Magueresse].  
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Fig. 9 : Measurement with a prototype array optimized to a given conguration (source 

dimensions). b) Sequential measurements for making the array denser. c) Sequential 

measurements for enlarging the array [19]. 

Fig. 7 : Reconstructed distribution of quadratic velocity flux from non-synchronous sequential 

measurements without references for various fractions of overlap. 
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Fig. 11 : Reconstructed source fields from non-synchronous sequential measurements (a-f) 

compared to the classical reference-based method (g-k) for increasing numbers of references. 

3.2.4 Power references 

A recognized drawback of inverse methods such as NAH is their poor ability to predict the 

acoustical power radiated by the sources over a wide operating frequency range and spatial 

directions not covered by the array. Worse than this, most methods tend to reconstruct a source 

distribution that radiates most of its power towards the array position as a result of power 

minimization in Tikhonov regularization. One solution to reduce this bias is to take some point 

measures of the acoustical power in regions not covered by the array by moving a microphone. 

In essence, the problem is very similar to the previous one since sequential measurements are 

taken in a non-synchronous manner, yet with the additional difficulty that power measurements 

lead to a non-linear inverse problem. A MCMC algorithm has recently been developed that can 

solve this problem [22]. 

4 CONCLUSIONS 

Although Bayesian probabilities are nearly as old as probabilities themselves, Bayesian 

inference has taken a long time to be accepted by the scientific community. The route seems 

even longer in acoustics. The aim of this paper was to demonstrate that a rigorous approach to 

inverse acoustic problem can be gained from the Bayesian formalism and that several ad hoc 

techniques can be justified within this framework. In addition, calculation tools such as MCMC 

that comes with Bayesian inference make it possible to solve complicated, non-linear, and 

multivariable inverse problems. Care should be taken to remind that similar solutions could 

surely have been otherwise, yet the beauty of the Bayesian approach is to provide a rather 
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systematic way of reasoning with a remarkable ability for generalization. Although intricate at 

first, it rapidly turns out to facilitate the understanding of many inverse problems. 
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