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Abstract

The use of unmanned aerial systems (UAS) or drones for a wide variety of applications,
such as law enforcement, search and rescue, agriculture, infrastructure inspection, mapping,
filming and journalism has become common. As it can be expected that the number of
applications will increase in the near future, the impact of these systems on the environment
– urban or rural – is a rising concern. Furthermore, airports are faced with an increased
security threat of unknown UAS penetrating airport areas and interfering flight operation.

This contribution aims at providing a tool for localizing and tracking simultaneously
flying drones via acoustic measurements. Measurements of a swarm of four quadcopter
drones using a 64-channel microphone array are evaluated with a multi-step process. First,
the position of the drones are determined via short-time frequency domain beamforming.
Based on the positions, an α-β filter is used to reconstruct the individual trajectories. The
accuracy of the acoustically determined positions is evaluated by comparing it to positional
data obtained from video recordings with a dual-camera setup.

1 Introduction

To this day, there are only few scientific studies dealing with noise effects and sound propaga-
tion properties of unmanned aerial systems (UAS). The noise emitted by UAS differs in many
ways from conventional aircraft or road vehicle noise. A study conducted by the NASA Lan-
gley Research Center concluded that UAS noise was perceived by study participants as more
annoying than road noise [4]. It can also be expected that UAS will generally operate closer
to people on the ground and that their use will not be limited to a specific area (e.g. around
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airports). Against this background it must be assumed that previous noise certification proce-
dures – e.g. according to ICAO Annex 16 [7] – are only partially applicable to the new and very
specific UAS noise.

A study performed by the German Federal Environmental Agency investigated sound emis-
sions of multiple quadcopter UAS with a maximum take-off mass below 2 kg, including
(psycho-)acoustic measurements during both indoor and outdoor flight campaigns as well as
the definition of horizontal and vertical noise directivity patterns [14]. The vulnerability of the
measuring method for determining the sound power level according to ISO 3744 [8] for slight
changes of the 3D position was identified. Furthermore, the use of the aforementioned measure-
ment method to determine a reproducible sound power level is only useful for UAS in hovering,
which represents only a very specific operating mode. Typically, such devices are also intended
to perform translatory movements.

Performing measurements including flight tests, on the other hand, poses challenges regard-
ing the reproduciblity or tracking of the flight paths, which is necessary for a correct source
characterization. Such tests usually have to be performed in open spaces, where additional
noise sources might be present. This makes it necessary to additionally filter signals emitted by
the measured object. Moreover, with increasing number of applications for UAS, monitoring
the noise impact caused by the drones will become important. If several drones are present
in the vicinity, it is necessary to acoustically separate the immissions from the individuals, i.e.
follow multiple trajectories at once.

In what follows, a method for reconstructing trajectories of multiple simultaneously flying
quadcopter drones from microphone array measurements is presented. The method was tested
in an anechoic chamber with up to four UAS flying at the same time in five different flight
scenarios. The accuracy of the acoustic position detection is quantified by calculating the de-
viations to positions detected using a dual-camera setup for 3D localization. Finally, coherent
trajectories with time-dependent position and velocity information are calculated and attributed
to the inividual drones.

2 Materials and methods

2.1 Measurement setup

Measurements were performed in the anechoic chamber at the Department of Engineering
Acoustics at TU Berlin. For acoustic recording, a planar array consisting of 64 wall-mounted
microphones with an aperture of 1.5 m was oriented towards the ceiling. While not ideal for
3D localization, this setup ensures that the equipment does not interfere with the flight paths.
Battista et al. [3] showed that source positions in 3D can be obtained from measurements with
a planar array even though the resolution capabilities in z direction is lower than in lateral di-
rection.

Additionally, synchronous video recordings were done with two cameras, with one of the
cameras positioned at the array center with the same orientation as the array and the second
camera fixed to the chamber wall, with its principle axis pointing towards the focus area above
the array. The setup as viewed from above is depicted in Figure 1.
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Figure 1: Measurement setup with the 64-channel microphone array and the FATO sites A-D.
The dashed line marks the x-y-extent of the area monitored by the array.

2.2 Measurement object

Four small quadcopter UAS (Type: Tello EDU, Manufacturer: Ryze Technology, see Fig. 2)
were used for the flight experiments, enabling remote-controlled as well as pre-programmed
auto piloted swarm-like flights above the microphone array. The Tello EDU is a small UAS
(sUAS), with a weight of 87 g (incl. propellers and batteries), sizing 9.8 cm by 9.2 cm (without
propellers and protection guards) and a propeller diameter of 7.6 cm. As the Tello EDU only
uses optical flow sensors and an inertial measurement unit for inflight positioning, it is suit-
able for indoor flights and comparable small flight distances, where global navigation satellite
systems like GPS or GALILEO are not available.

All sUAS were integrated into a WiFi network and controlled via a Python-based program-
ming interface. In this experimental setup, the Tello EDU only accepts vector- and speed-based
control inputs (up-, down-, for- and backwards, yaw along z axis, speed control), thus an imple-
mentation of flight plans consisting of several 3D coordinates and time was not possible.

We designed five flight missions above the array, from single flights to swarm flights using
four sUAS. The final setup of final approach and take-off (FATO) sites (A, B, C, D) is shown in
Figure 1. Due to suboptimal flight conditions (e.g. low light and uneven floor), the navigation
performance in vertical and lateral extension repeatedly deviated from the target flight path.

• Scenario 1: One sUAS is taking off from FATO A upwards to 1.3 m flight height and flies
towards FATO C, where it lands.

• Scenario 2: Two sUAS are taking off from FATO A and FATO C respectively, upwards to
1.3 m flight height, and simultaneously fly in opposite directions above the array center
towards the opposite FATO.
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Figure 2: Tello EDU (left) and preparation of measurement flights with 4 identical Tello EDU
sUAS (right)

• Scenario 3: Two sUAS are taking off from FATO A and FATO C respectively, upwards
to 1.3 m flight height, and simultaneously fly in opposite directions towards the array
center, where a static hover maneuver with a 90◦ turn towards FATOs B and FATO C is
performed.

• Scenario 4: Four sUAS are taking off from FATO A-D and fly at different flight heights
to the opposite FATO.

• Scenario 5: Four sUAS fly remote-controlled along arbitrary paths.

Schematics for the first 4 scenarios are given in Fig. 3.

2.3 Flight path reconstruction

Flight records with 4D-trajectory information (3D position + time) of the sUAS are not available
directly but could be calculated based on the parsing raw measurements of the IMU (translatory
acceleration and rotation rates). However, due to drift effects and non-accurate timestamps
this approach is not accurate enough to determine the true position above the array. Hence,
flight paths of the drones were only reconstructed by evaluating video and audio recordings
respectively.

Optical tracking

To visually monitor the trajectory of the moving drones during the experiment, consumer-grade
cameras (GoPro Hero 7 black) were used in a stereo setup. Each of the cameras covered a differ-
ent view of the volume of interest, however their exact alignment was not known a-priori.GoPro
1 was positioned on the array, with its field of view covering the ceiling of the chamber; GoPro
2 was mounted on the wall in “A”-direction, oriented towards the opposite wall. Figure 4 shows
the views of the respective cameras.
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Figure 3: Pre-programmed flight scenarios of the drones.

A shooting mode with an aspect ratio of 4:3 (2704× 2028), 2.7k resolution, and a frame rate
of 50 fps was selected to capture the spatially limited recording area. The wide field of view
of the camera’s fisheye lens made it possible to observe a large area in the volume of interest.
However, the images contained additional radial and tangential distortion.

In order to use the measured 2D images to reconstruct the drones’ flight path in the real
world 3D coordinate system, the lens distortion and the relative positioning, including rotation
and translation of the camera views, must be known. The determination of unknown lens pa-
rameters (tangential, radial distortion coefficients, focal length, principal points) and alignment
of optical sensors is an often encountered problem in computer vision [6], widely known as
camera calibration.

As described by Abdel-Aziz et al. [1], the mapping from measured image points to object
space involves a two-step transformation, which they introduced as Direct Linear Transform
(DLT). The DLT coefficients can be determined using the Sparse Bundle Adjustment (SBA)
method [10], which solves the nonlinear least-squares problem based on multiple measurements
of a calibration object with known position in the field of view projected on the image plane.
Due to the size of the observation volume, no object that completely fills the measuring field
and has known 3D dimensions could be used for calibration. Instead, two blue balls attached to
a rod with fixed and known distance, often referred to as a “wand” in the literature [13], were
moved in the field of view as shown in Figure 4. A total of 200 frames with paired points was
used for optimization.

The edges of several visible absorbing wedges and the lamps were used as additional 64
points that project from the real world coordinate system on the image plane of the two cameras
for optimization. For tracking of the wand and calculation of the DFT-coefficients via SBA,
the Python-based software Argus was used [9]. The world coordinate frame was chosen to
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Figure 4: Fields of view of the wall-mounted GoPro 2 (left) and the GoPro 1 positioned at the
array center including camera calibration procedure with the “wand” (right).

be aligned with that of the camera positioned on the microphone array. To ensure that the
camera coordinate system also matches that of the microphone array, a small loudspeaker was
positioned at a distance of 1 m to the center of the array and used as visual an acoustic reference
point. The center of the camera coordinate system was then adjusted accordingly in x, y and z
direction so that the position of the reference point in the camera coordinate system coincides
with that of the microphone array. It should be noted that this step only accounts for a possible
translation between the two coordinate systems but did not compensate any rotation. However,
based on the comparison of acoustically obtained trajectories and those determined from image
data, it is assumed that the rotation is negligible.

Acoustic tracking

The reconstruction of the flight paths from microphone array measurements is done in a multi-
step process. In a first step, the recording is divided into short tracks of ∆t = 0.1s length, with
the assumption that within that time, a moving drone has changed its position sufficiently little
to still be detectable with stationary frequency domain beamforming.

Using Welch’s method [16] with a block length of 512 and an overlap of 50 %, a cross-
spectral matrix (CSM) is estimated for each discrete frequency by:

C =
1
K

K

∑
k=1

pkpk
H , (1)

with the number of averaged cross-spectra K = 19 in this case. The vector pk ∈ CM contains
the complex spectral data for each of the M microphones.

For beamforming in the frequency domain, the sound propagation model (i.e. shifting the
phase and correct the amplitude according to distances of microphones to focus points rs,m) is
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Table 1: Measurement and data processing parameters for the beamforming.

Total number of microphones 64
Array aperture 1.5 m
Sampling rate 51 200 Hz
Focus grid (excl. mirror) (lx× ly× lz) 5.2m×5.2m×1.7m
Focus grid resolution 0.05m
FFT window 512 samples, von Hann
Averaging time 0.1 s
Beamforming Functional Beamforming (ν = 8)

Removed main diagonal of CSM
Reference position rs,0 = 1m

described via the steering vector h, whose entries are calculated by

hm =
1

rs,m

√
M ∑

M
l=1 rs,l

−2
e−jk(rs,m−rs,0) , m = 1 . . .M , (2)

with s = 1 . . .N being the focus positions of interest. The reference distance at which the levels
are evaluated is set to rs,0 = 1m for all focus points. The formulation in (2) ensures the correct
detection of a local maximum at the location of a source [11].

For this step, the major objective consists of finding the sources, whereas the exact quanti-
tative information about its strength is not of importance. Therefore, the main diagonal of the
CSM is set to zero (as are its resulting negative eigenvalues) and Functional Beamforming [5]
can be applied:

b(xs) =
(
hH(xs)C

1
ν h(xs)

)ν

. (3)

The exponent ν = 8 ensures sufficient side lobe suppression. The beamforming is done using
the Python package Acoular [12] for a three-dimensional, regularly discretized area in which
the drones are to be tracked. Acoustic data processing details are summarized in Table 1.

In the next step, local maxima in the focus area are detected using the multi-dimensional
maximum filter from the SciPy package [15]. To avoid false positives, a hard level threshold
below which source candidates are discarded, is set. Furthermore, a slight position resolution
enhancement is achieved by calculating the center of mass of the focus grid point containing
the maximum and its neighboring points (including up to three neighbors in every direction).

The above steps are repeated for every time step, yielding positions where acoustic sources
are detected, which are assumed to be attributed to a drone. A quantitative comparison of the
positions calculated from the video recordings to those calculated from the microphone array
measurements is done in Section 3.1.

The extracted positional information is, however, still insufficient in two aspects. Firstly, it
is not ensured that a movement along the reconstructed points is physical, and secondly, for
the case of multiple drones being present in the monitored area, it is necessary to attribute the
points to the respective trajectories of the individuals. Both problems are assessed via a two-step
process consisting of trajectory prediction combined with solving a linear assignment problem
(LAP), based on the method described by Wu et al. [17].

Let the time-dependent state x(t) of a moving object be described by its 3D position and
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velocity:
x(t) = (x,y,z,u,v,w)T (4)

With the assumption that the current state exclusively depends on the previous state, one can
postulate that

x(t) = F x(t−1)+σp(t) , (5)

with the transition matrix

F =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6)

and some process noise σp. The observed quantities are only the current positions z(t), which
are described by

z(t) =Hx(t)+σm(t) , (7)

with the observation matrix

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (8)

and the unknown measurement noise σm.
With a known state x(t−1) and following Eq. (5), the current state can predicted via

x̂(t) = F x(t−1) . (9)

This prediction may not necessarily agree with the associated observation z(t), however, the
prediction can be updated to estimate the true state with

x(t) = x̂(t)+G(z(t)−Hx̂(t)) . (10)

Equations (9) to (10) describe a Kalman filter [2]. While it is possible to determine an optimal
Kalman gain G, an efficient simplification is given by the α-β filter with fixed coefficients:

G=



α 0 0
0 α 0
0 0 α
β

∆t 0 0
0 β

∆t 0
0 0 β

∆t


, (11)

where α and β are weight factors between measurement and prediction. In this case, values of
α = β = 0.2 yield satisfactory results.

Before applying Eq. (10), the observation z(t) associated to the prediction x̂(t) has to be
identified. This is trivial in case of a single drone, but can be challenging in case of multiple
drones flying in close vicinity of each other. Therefore, a linear assignment problem (LAP) is
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Table 2: Parameters for the trajectory generation.

Source level threshold 0 dB
Max distance of trajectory points 0.83 m
Max. number of frames w/o source 5
Min. number of valid trajectory points 5
Smoothing filter α = β = 0.2

formulated with a cost matrix D:

Di j = ‖zi(t)−Hx̂ j(t)‖ , (12)

where i and j denote the specific observations and predictions respectively. The LAP is solved
using SciPy’s linear sum assignment implementation [15].

This process is repeated for every time step, including all detected maxima. If a maximum can
not be associated with an existing trajectory, a new trajectory state is initialized. Furthermore,
if no associated points can be found for an active trajectory, the drone is assumed to remain
at constant speed for a fixed number of time steps. If, after that time, no further valid points
are detected, the trajectory is set to inactive and the presumed trajectory states are discarded.
Only trajectories with a minimum number of points are regarded as valid. Table 2 summarizes
important parameter for the trajectory generation.

3 Results

The measured drones emit a very characteristic humming noise while flying. Figure 5 shows
an averaged narrow-band spectrum (∆ f = 12.5Hz) and spectrogram for the single drone of
Scenario 1, measured at the center-most microphone of the array. The spectrum features strong
tonal components, with multiples of the 558 Hz blade passing frequency (BPF). With two rotor
blades on each rotor, this amounts to an average rotor speed of 16 740 rpm . Around second 13,
the drone passes the microphone, inducing flow noise on the microphone. This is visible in the
spectrogram through an increase of the level at the lowest frequencies.

For the acoustic detection of the position, small frequency bands of 558 Hz bandwidth are
used. With the block size of 512, this amounts to an evaluation of 6 discrete frequencies per
band. The center frequencies for the evaluations in the following section are multiples of 2, 5,
8, 10, 12, and 15 times the BPF.

3.1 Positional accuracy

For the verification of the accuracy of the drone tracking by the array, the drone positions
obtained from short-time beamforming of scenario 1 were compared to the positions yielded by
the dual-camera system. It should be mentioned that the camera data can not serve as an exact
ground truth of the trajectory, since the accuracy of the camera system itself highly depends on
the quality of the calibration, which was not validated in the case and can also vary spatially.
However, since the two methods for path detection work completely independent of each other
– one relying purely on video while the other only evaluates acoustic data – both results can be
compared against each other to quantify the uncertainty.
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Figure 5: Narrow band spectrum (left) and spectrogram (right) of a single-drone flight.

Acoustic positions were calculated with 10 frames per seconds, optical positions with 50
frames per seconds. Frame recording was not synchronized initially. Therefore, the position
determined with the microphone array at one respective time step was compared with the posi-
tion from image data at the closest time step.

Table 3 shows the average deviation of the acoustically obtained positions along x, y and z
direction over a number of snapshots for different frequencies.

Table 3: Mean value and standard deviation of drone x,y,z detected via camera vs. array setup.
f /Hz µx/m µy/m µz/m σx/m σy/m σz/m
1116 −0.085 0.021 −0.024 0.126 0.029 0.077
2790 −0.059 0.015 −0.048 0.077 0.015 0.027
4464 −0.072 0.018 −0.026 0.078 0.018 0.033
5580 −0.069 0.016 −0.034 0.072 0.016 0.030
6696 −0.086 0.016 −0.044 0.088 0.015 0.035
8370 −0.075 0.016 −0.035 0.077 0.016 0.030

Along the x direction, slightly higher deviations can be observed on average than along the
other directions. However, the mean spatial difference is always below 9 cm. A very good fit
with deviations of about 2 cm can be observed along the y dimension. In general, the accuracy
of the tracking does not vary a lot for the tested frequencies. At the lowest evaluated frequency
of 1116 Hz, the standard deviation increases in all directions.

Figure 6 shows detected points for both methods. As image processing was done at a higher
frame rate than acoustic processing, more positions could be determined with the cameras.
While the results are in very good agreement towards the C side, on the A side the positions
appear to deviate more. This could be attributed to the camera calibration being mostly done
with video recordings where the wand was on this side. The comparison proves that for this
setup, acoustic tracking can be used as an alternative with similar accuracy as camera tracking.
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Figure 6: Detected positions of the drone flying Scenario 1. Orange: from video recordings,
green: from array measurements (evaluated at 5580 Hz).

3.2 Reconstruction of drone trajectories

For the trajectory detection of the different scenarios, all evaluations were done with the array
following the multi-step data processing described in Section 2.3 at a frequency of 5580 Hz.

The calculated trajectory plots are shown in Figures 7 to 11. The lines indicate the calculated
flight paths, with their color (blue to yellow) matching the velocity of the drone at that posi-
tion. The corresponding scale is given on the vertical colorbar. Each trajectory line begins and
ends with a colored sphere, whose color (from white to red) indicates the instance in time at
this position. The corresponding horizontal colorbar shows the respective times, which do not
necessarily start at zero, since the evaluated acoustic measurement may have started some time
before the event of interest happened.

Trajectories beginning after or ending before the start or end of the recording time may indi-
cate several phenomena: drones starting or stopping to fly, drones leaving the monitored area,
multiple sound sources on the drones that are sufficiently afar from each other to be detected as
individual maxima, or changes in the flying configuration such that in the observed frequency
band not enough energy is present to be considered as source by the algorithm. Furthermore, a
sudden change of the velocity may lead to the predicted position to be too far from the actual
one, so that the flight path of one drone may be cut into several trajectory pieces.

Several views of the trajectory of Scenario 1 are shown in Fig. 7. The recording started
shortly after take-off, when the drone is hovering for a couple of seconds before it climbs
another 50 cm and commences its path from FATO site A to C, where it lands. As can be seen in
the side view from B towards D, the horizontal part of the path is not completely straight. This
may either be caused by the drone adjusting its path when its sensors encounter the array or a
slight positional error due to an incorrect sound propagation model – e.g. the flow caused by
the drone itself is not accounted for. This particular characteristic is not observed in the other
scenarios.

Additionally, the climb and landing paths appear to be somewhat slanted away from the array.
This is not plausible and was also not physically observed. It can therefore be concluded that
this is due to a mapping error by the algorithm, which may be caused by the elongated point
spread function lateral sources exhibit at large angular deviations from the array axis, or by
different visibility of noise-emitting parts of the drones from the microphones. In the other
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Figure 7: Scenario 1: Single drone flying from FATO A to FATO C.

scenarios, the apparent slanting of vertical climb or descent trajectories at lateral positions can
be seen as well.

Scenario 2 is depicted in Fig. 8. The acoustic tracking starts with the drones being already
in-flight to the opposite sites. The calculated trajectories are more straight than in the previous
case, which may be influenced by the flight height of the two drones being (inadvertently) lower
than that of the single drone.

Scenario 3 featured two opposite drones flying towards the center an performing a 90◦ left
turn in front of each other (Fig. 9). Apart from different velocity profiles the drones’ trajectories
are very similar. It is visible that the drone flying from FATO A to B exhibited a more unsteady
hovering behavior while performing the turn.

In general, all pre-programmed flight maneuvers performed as intended during the prelimi-
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nary tests. However, the poor lighting conditions and the uneven floor in the anechoic chamber
led to the drones repeatedly deviating from their projected behavior.

This becomes most apparent for Scenario 4, where one of the drones did not take off. As
shown in Fig. 10, the remaining three drones performed as expected. However, the recon-
structed trajectory of the drone flying from A to C, with its path being the most elevated of the
three, shows several peculiarities. Firstly, the trajectory during hovering was split into three
parts. Secondly, the path over the array seems to considerably vary in height, which was not
visually observed. Aside from the flight height, this drone intersecting with the drone flying
from D to B (in (x,y) positions) at almost the same time might impact the position detection as
well.

Finally, two segments of the recording of Scenario 5 are presented in Figure 11. Each of
the four drones was individually remote-controlled by a person, and flying was not constrained
to the monitored area, which was however extended by 1 m in z direction. As is visible, the
reconstructed path is interrupted several times1. Apparently, the filter configuration with fixed
coefficients α and β is not sufficient for obtaining a continuous trajectory in this case. However,
in general, the found trajectories are plausible and match the visual observations.

3.3 Computational cost

All calculations were done on a DELL XPS 13 9360 Laptop with 8 GB RAM and an Intel
i5-8250U 4×1.60 GHz CPU. The detection of the source candidates with beamforming on the
extensive grid is by far the computationally most costly part of the method, with a runtime of
≈ 8s per time step.

Acceleration, e.g. for real time application, could be achieved by using an adaptive focus
grid definition, less sensors, and by calculating the functional beamforming result with only
one discrete frequency or for less time steps.

4 Conclusion

A method for positional tracking of UAS using microphone array measurements was presented.
Although the resolution capability of a planar array is limited, it has been shown to be sufficient
to track multiple drones flying in close vicinity to each other and even crossing paths. The used
filter setup allowed a fast calculation, but led to short-time interruptions of some trajectories.

A comparison with position detection from video recordings has shown that acoustic posi-
tioning can perform similarly. Several flight scenarios were tested, ensuring the robustness of
the method. Therefore, this technique can be applied for cases where the trajectory of moving
sound-emitting objects is of interest, be it as redundant unit to video monitoring or stand-alone
system.

Furthermore, the reconstructed trajectories could serve as basis for time domain beamforming
methods to isolate the signal of individual drones, which could be realized with the same array.

1It should be noted that the two most-closely spaced dark-red points between the letters C and D in the upper plot
do not mark a falsely detected trajectory interruption but an actual collision of two drones in mid-air.
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Figure 8: Reconstructed trajectories of Scenario 2: Two drones at FATO A/C flying in opposite
direction towards FATO C/A.
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Figure 9: Reconstructed trajectories of Scenario 3: Two drones starting from opposite FATOs
A/C, flying towards array, where they perform a left turn and fly towards FATOs B/D.
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Figure 10: Reconstructed trajectories of Scenario 4: Three drones from FATOs A/C/D flying to
the opposite FATO.
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Figure 11: Reconstructed trajectories of Scenario 5, two different time segments: Four drones
flying remote-controlled and arbitrarily.
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