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Abstract

The aeroacoustic source localization task usually involves planar microphone arrays and
calculation points located on a surface at a certain distance with respect to the array. An im-
plicit assumption that sources are located on this surface is therefore performed. However,
in many cases, this assumption represents an oversimplification of the problem, given that
distance of sources with respect to the array are very often unknown. The goal of this paper
is to describe strategies for investigating a volume of potential sources rather than a surface.
Indeed, this volumetric approach does not need any a priori knowledge of array-to-source
potential distances. Since direct beamforming techniques have poor spatial resolution in
longitudinal direction, i.e. direction normal to the array plane, more refined algorithms,
like deconvolution techniques or inverse methods, are required to obtain useful results. In
this work inverse methods (Equivalent Source Method - ESM - and Covariance Matrix Fit-
ting - CMF) are exploited in the context of volumetric noise source imaging using a single
planar array. Additional issues have to be faced in volumetric imaging with respect to con-
ventional surface imaging. To prove this concepts, different solution methods are tested on
simulated data and on a more challenging setup like an airfoil in an open jet.

1 INTRODUCTION

Acoustic source mapping techniques based on microphone arrays are extensively used for noise
source localization and quantification. Very often planar arrays are utilized for this purpose and
source mapping is performed on planes or surfaces that are supposed to contain all acoustic
sources. However, real sources are not necessarily located there and this might cause mislead-
ing results. Indeed, it is interesting for the aeroacoustic community to investigate the extension
of common acoustic mapping techniques to volumetric mapping. Sarradj [32, 33] analyzed the
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problem for direct beamformers using a single planar array. He pointed out that different steer-
ing vector formulations (i.e. different spatial filters) are able to provide either correct location
or correct level. In addition, due to poor spatial resolution of conventional beamformers in the
third dimension, deconvolution techniques such as Orthogonal Beamforming [35], CLEAN-SC
[22] or DAMAS [5, 6, 39] are mandatory to obtain accurate reconstruction of real source dis-
tribution. Another possibility is to use inverse methods, e.g. Equivalent Source Method - ESM
- [27] or Covariance Matrix Fitting - CMF - [39]. Padois et al. compared the performances of
different techniques in three-dimensional mapping and also studied the effect of using multiple
planar arrays simultaneously [23, 24]. Ning et al. [20] used Compressed sensing techniques
to face three-dimensional mapping problem. This work focuses on the use of inverse methods
to perform noise source volumetric mapping using a single planar array and describes some
strategies to face additional problems that rise in this challenging context. The paper is orga-
nized as follows. A theoretical introduction to the inverse acoustic problem and its extension in
volumetric noise source imaging is provided in Section 2. Different approaches and solvers are
compared in Section 3 by exploiting both simulated and experimental data. The main conclu-
sions of the work are drawn in Section 4

2 THE VOLUMETRIC INVERSE ACOUSTIC PROBLEM

2.1 Inverse acoustic problem formulation

In acoustic imaging, inverse methods make the direct acoustic problem discrete by consider-
ing propagation from sources to measurement locations. This relies on the Wave Superposition
Method [17] which states that the acoustic field, generated by a complex radiator, can be repro-
duced as a superposition of fields caused by a set of simpler sources enclosed within the radiator.
This makes it possible to define a spatial distribution of elementary sources (e.g. monopoles,
dipoles, plane waves ecc.) representing complex sources as a combination of them. In fre-
quency domain, the direct source-receiver propagation problem is linear and can be written, for
each frequency, as:

Gq = p , (1)

where q ∈ CN×1 is a complex vector of source strengths on N assumed positions, p ∈ CM×1 is
a vector containing acoustic complex pressures at microphone locations and G ∈ CM×N is the
acoustic transfer matrix. The calculation of p for a given q is the direct acoustic problem which
is a well-determined problem and has unique solution. The inverse acoustic problem aims to
retrieve the source distribution q from measurement at microphone locations p. This problem
results to be ill-posed in the Hadamard sense [9, 12], i.e. existence, uniqueness and stability of
the solution are not guaranteed. Inverse problem formulation can be also expressed as a linear
system:

q̂ = Hp , (2)

where q̂ is the solution for a particular inverse operator H ∈ CN×M. Indeed, as it will be shown
ahead in the paper, this latter term can assume different forms depending on the selected solu-
tion method or the adopted regularization strategy. A complete review about different inverse
operators is provided by Leclere et al. in [19].
When the acoustic field is stationary, the former problem can be rearranged in terms of Auto-
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and Cross- Power Spectra averaged over several observations:

GQGH = P , (3)

where the superscript H stands for the complex conjugate transpose operator. The matrix P =
〈ppH〉 is the Cross Spectral Matrix - CSM - of pressure at microphone locations and Q = 〈qqH〉
is the CSM of sources strengths (〈·〉 is the average operator). Using the quadratic form, the
solution of the inverse problem can be obtained as

Q̂ = HPHH . (4)

The main advantage of inverse methods with respect to classic direct beamforming approach is
that all sources are considered together, thus leading to better results in terms of source strength
quantification and in presence of multiple correlated/uncorrelated acoustic sources. However,
since the number of equivalent sources is usually much greater than the number of microphones,
the problem is generally under determined.
A straightforward approach for solving Eq. 1 can be identified in the Moore-Penrose pseudo-
inverse, which is a generalization of inverse matrix to rectangular matrices. Since the linear
system is under determined an exact solution is provided by the right pseudo-inverse. This
inverse operator returns the Least 2-Norm Solution, i.e. the solution with the smallest 2-norm
among those satisfying the linear equations in Eq. 1 :

H = G+R = GH(GGH)−1 , (5)

q̂ = G+Rp = argmin
q

(
‖q‖2

2 subject to Gq = p
)
. (6)

From a physical point of view, this represents the minimum energy solution that exactly matches
the pressure data measured. This is often referred to as naı̈ve solution. However, even though the
pseudo-inverse approach is supposed to provide a unique and exact solution, the latter may still
be unstable because of errors in the propagation model and/or noise in measured data (providing
variations on G and p respectively). The Discrete Picard Condition - DPC - [10] might help in
addressing this stability issue. Indeed, a given right-hand term p of Eq. 1 satisfies the DPC if,
for all numerically non-zero singular values si (extracted via a Singular Value Decomposition -
SVD - of the G operator), the corresponding Fourier coefficients uH

i p, being ui the columns of
the U ∈ CM×M unitary matrix extracted from the SVD of G, decay to zero faster than si on the
average. This means that, once defined the terms ηi as

ηi =
|uH

i p|
si

, (7)

named here Picard coefficients, the solution is stable if ηi are constant, or decreasing, on the
average. This condition can be checked by visual inspection of a Picard plot, which shows the
trend of Picard coefficients. Noise has an effect on the Fourier coefficients, in particular those
related to the smallest singular values, and is amplified during the inversion thus making the
solution unstable.

A common approach to lower this amplification effect is to exploit the Tikhonov regulariza-
tion [38]. The Tikhonov approach consists in jointly minimizing the solution norm ‖q‖2

2 and
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residuals norm ‖Gq−p‖2
2, thus leading to the following minimization problem:

q̂(λ ) = argmin
q

(
‖Gq−p‖2

2 +λ
2‖q‖2

2
)

(8)

where the Regularization parameter λ 2 ≥ 0 controls the trade-off between the amplitude of the
solution and the fitting error.

The regularization parameter amplifies the singular values si < λ while the singular values
si > λ remain almost unaltered. Therefore, when matrix inversion is performed, the smallest
singular values are smoothly filtered preventing the over amplification of noise and stabilizing
the solution. In other words, Tikhonov regularization controls the energy of the solution trading
this for a small fit error. As the ”cut-off” on singular values is adjusted varying λ , the most crit-
ical aspect is to estimate the correct regularization parameter for each specific problem. Several
strategies are proposed in literature, such as L-curve criterion or Generalized Cross-Validation,
or a combination of them [11],[16],[18].
The general form of Tikhonov regularization makes possible to have more control on the solu-
tion considering the following problem:

q̂(λ ,W) = argmin
q

(
‖Gq−p‖2

2 +λ
2‖Wq‖2

2
)

(9)

where the term ‖Wq‖ is named discrete smoothing norm. The square invertible matrix W
is used to introduce additional information about the solution. This problem boils down to a
standard Tikhonov formulation substituting q̃ = Wq and G̃ = GW−1:

ˆ̃q(λ ,W) = argmin
q̃

(
‖G̃q̃−p‖2

2 +λ
2‖q̃‖2

2
)
. (10)

The solution of original problem is obtained from q̂ = W−1 ˆ̃q.
An alternative, or probably better to say, a generalization of the Tikhonov approach, has been

proposed by Antoni some years ago [3]. He exploited Bayesian inference for developing a
method that is able to

• identify the optimal basis functions minimizing the reconstruction error;

• include a priori information on source distribution to better condition the problem and
ease the localization task;

• provide a robust regularization criterion with no more than one minimum.

The Bayesian approach considers experimental errors in a likelihood functions which stands for
the direct probability of pressures values, given a certain propagation model and the random
fluctuations of measurement noise. Indeed, by assuming complex Gaussian prior probability
density function - pdf for source parameters, the Bayesian framework ”mechanically” produces
a regularized solution similar to the Tikhonov one. The Bayesian approach, however, identifies
the regularization parameter λ 2 in the Noise-to-Signal Ratio - NSR - , i.e. the ratio between
noise energy β 2 and source energy α2 and provides two different strategies for its direct esti-
mation from measured data, namely the Maximum A Posteriori - MAP - and the Joint approach.
For a more detailed explanation on empirical Bayesian regularization in inverse acoustic prob-
lem the interested reader might refer to [27, 28].
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2.2 Inverse problem solution strategies for volumetric mapping

There are three additional issues when dealing with volumetric mapping:

• high number of potential sources located at very different distances from the array centre;

• poor spatial resolution of the array in the direction moving far away from the array centre;

• high number of potential sources with no contribution to the acoustic field.

One trick to face the first issue is to compensate for the source-receiver distance r. This can be
done either exploiting a weighting strategy on the strength-to-pressure acoustic transfer func-
tion, as suggested by Pereira et al. [29], or using a pressure-to-pressure acoustic transfer func-
tion formulation. In this latter case, when monopoles are considered, the elements of G are

Gmn =
r0n

rmn
e− jk(rmn−r0n) . (11)

This propagator returns the acoustic pressure at microphone location m depending on sound
pressure at reference point ”0” caused by the monopole source at location n.

It is a well known issue that the direction moving far away from the array centre suffers of
poor resolution with respect to the other two, especially when the real source is at a distance
greater than one array diameter from the array plane. This aspect may limit localization and
quantification accuracy, especially at low Helmholtz numbers - He. One way to overcome this
problem is to enforce the sparsity of solution. Indeed this sparsity constraint fits well also with
the third item listed above.
Sparsity can be enforced by reformulating the problem in terms of Lp-norm

q̂(λ , p) = argmin
q

(
‖Gq−p‖2

2 +λ
2‖q‖p

p
)

(12)

and minimizing for p < 2. To obtain accurate solution in volumetric mapping, a value of
0 ≤ p ≤ 1 is strongly recommended, even though for p < 1 this results in a non-convex opti-
mization problem. The L0-norm minimization can be approximated by the Orthogonal Match-
ing Pursuit [25, 31] algorithm. This is a greedy algorithm that selects only those sources which
give the best approximation of measured data. A version of the algorithm making use of cross-
validation principle [4] reduces possible reconstruction errors. The L1-norm minimization can
be calculated by means of Least Angle Regression Lasso algorithm [37]. Another family of
methods raises from Eq. 9, i.e. the general form of Tikhonov regularization. The Iteratively
Reweighted Least Squares - IRLS - [7, 8] algorithm can be used for obtaining sparse solution
and relies on the following consideration:

‖q‖p
p =

N

∑
n=1
|qn|p =

N

∑
n=1

w2
n|qn|2 = ‖Wq‖2

2 . (13)

The weighting matrix W is a real diagonal matrix and the set of weights depends on the result
of the previous iteration according with the following expression:

w(it)
n =

∣∣∣q̂(it−1)
n

∣∣∣ (p−2)
2 (14)
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where it is the current iteration. This algorithm boils down to an iterative procedure that is a
fixed-point for Eq. 12 and converges to global minimum for convex problems (p ≥ 1) or to a
global or local minimum for non-convex problem (0 ≤ p < 1). As the exponent of weights is
negative for p < 2, division by 0 must be avoided. For this reason, those equivalent sources,
having an amplitude below a threshold, are discarded from calculation. In [21], a threshold of
100 dB with respect to maximum of |q̂n|(it−1) is suggested. In the same work it is also suggested
a convergence criterion:

ε
(it) = 10log10

(〈∣∣∣q̂(it)n /q̂(it−1)
n

∣∣∣〉) (15)

where the operator 〈·〉 is the spatial average. This criterion requires that source amplitudes
remain almost unaltered in the last 2 iterations to stop the algorithm. In this work a slightly
different criterion is proposed:

ε
(it) = 10log10

(
MSR−

∣∣∣∣d(MSR)
d(it)

∣∣∣∣− ∣∣∣∣d2(MSR)
d(it)2

∣∣∣∣) (16)

MSR =
〈∣∣∣q̂(it)n /q̂(it−1)

n

∣∣∣〉 (17)

where MSR stands for Mean Source Ratio. This criterion can be evaluated only for it > 2 and is
more restrictive because it requires that variation in the solution are small over last 3 iteration.
The algorithm stops when ε(it) ≥−0.1 dB.

Table 1 shows the solution strategies tested in this work for volumetric acoustic mapping. The
Equivalent Source Method (ESM) is intended here as a method for solving the linear form of
acoustic problem such as the Generalized Inverse Beamforming or its variants [27, 30, 36, 40].
A map is calculated for each relevant eigenmode of CSM and then they are summed together
to obtain the complete map. Another common approach in literature is the Covariance Matrix
Fitting (CMF) [14, 15, 39] that means solving the quadratic form of acoustic problem in order
to find the combination of sources that produces the ”best” fitting of the measured CSM. The
assumption of uncorrelated sources is made and therefore source power matrix Q becomes
diagonal. This allows to easily rearrange the quadratic form as a standard linear system and
force a real solution. In addition, the linear system is formulated using only the upper triangular
part of CSM without the diagonal.

Name Formulation Algorithm
ESM-IRLS Linear IRLS + Bayesian regularization (MAP)
CMF-OMPCV Quadratic Cross-Validated OMP
CMF-LassoLars Quadratic LassoLars
CMF-IRLS Quadratic IRLS + Bayesian regularization (MAP)

Table 1: Solution strategies

The CMF approach is implemented in the open-source Python software Acoular [1, 34] and
utilizes the machine learning library scikit-learn [26] for Cross-Validated OMP and LassoLars
solvers. The latter requires the selection of a regularization parameter λ that represents the
trade-off between the fitting error and the L1 solution norm. The version of IRLS proposed
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in this work is implemented in MATLAB and the regularization parameter is estimated using
the MAP Bayesian criterion cited above. This solver is applied to CMF and ESM. Since CMF
requires positive source coefficients, at each IRLS iteration authors suggest to set positivity con-
straint to sources having negative power, i.e. force them to 0 as in the Gauss-Seidel procedure
of DAMAS.

3 RESULTS

3.1 Simulated data

The first test case is the Analytical Benchmark 8, available at [2]. This dataset represents a
simulation of measurements in an open jet wind tunnel with a round jet. Noise sources are three
uncorrelated monopoles emitting white noise. Simulated setup is depicted in Fig. 1 where the
black circle represents the nozzle of the open jet and black lines mark the region of interest.
Source locations are reported using the red crosses. The 64 microphones array is situated above
the volume and has an aperture of D = 1.5 m. The volume to map has dimensions Dx = 1 m,
Dy = 1 m, Dz = 0.8 m and is discretized with three-dimensional regular grid of points using 2
cm of step thus having 106.641 points. The flow is in x-axis direction and the sound propagation
through the flow field is calculated using Acoular OpenJet environment. The nozzle diameter
is 0.5 m and the jet flow speed is 0.2 Mach. Since there are only 3 uncorrelated sources active
in the scenario, ESM is applied only to first 3 eigenmodes. The regularization parameter for
LassoLars solver is chosen here empirically equals to 10−6. The reconstructed source spectra
are obtained by integration of maps over a spherical volume of 6 cm radius centered in the exact
source location. Figure 6 depicts the difference in terms of source strength between the exact
source spectrum and the one obtained from the map for each tested method.

Figure 1: Simulated measurement setup
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x y z
Source 1 0.10 0.00 -0.50
Source 2 0.10 0.12 -0.50
Source 3 0.10 0.24 -0.50
Nozzle centre -0.60 0.00 -0.50

Table 2: Setup coordinates (m)

All methods can correctly localize and separate sources from 2 kHz band onwards (He ≈ 8).
Indeed, all maps become similar as frequency increases. However, for lower frequencies only
CMF-LassoLars and CMF-IRLS with p = 0.9 can recognise three different monopoles. On the
contrary, CMF-OMPCV produces a useless solution in this band. Both CMF and ESM solutions
obtained using IRLS with p = 1 return a sort of single linear source because they are not able to
separate different contributes. Lastly, ESM-IRLS with p = 0.9 recognizes only two monopoles.
Quantification of source spectra is also promising, in particular CMF-based methods provide
good estimation from 1.5-2 kHz onwards, while for lower frequencies results strongly depend
on the particular solution strategy adopted. Equivalent Source Method starts to provide good
estimation of source strength only above 3.5 kHz (He ≈ 14). In general, IRLS based methods
show a tendency to slightly underestimate the reconstructed source spectra. The best results,in
terms of localization and quantification, are provided by CMF-LassoLars and CMF-IRLS with
p = 0.9.
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−6

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 2: 1000 Hz 1/3-octave band (He ≈ 3.8 - 4.7)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−6

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 3: 2000 Hz 1/3-octave band (He ≈ 7.6 - 9.4)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−6

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 4: 4000 Hz 1/3-octave band (He ≈ 15.3 - 19.0)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−6

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 5: 8000 Hz 1/3-octave band (He ≈ 30.5 - 38.2)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−6

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 6: Reconstructed spectra of sources
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3.2 Experimental data

The second test case is a real experiment conducted in the aeroacoustic wind tunnel at Bran-
denburg University of Technology [13]. A NACA 0012 airfoil is positioned in an open jet of
diameter 0.2 m and core velocity 50 m/s. The airfoil has a span of 0.28 m and a chord length of
0.25 m. The boundary layer tripping was realized with a 2.5mm anti-slip tape applied at 10% of
the chord both on the suction and the pressure side. The array utilized has 56 microphones and
a diameter D = 1.3 m; it was placed 0.715 m above the airfoil with respect to the array. Figure 7
shows the position of the airfoil and the nozzle. The volume of interest has dimensions Dx= 1.1
m, Dy = 1.2 m and Dz = 0.8 m and is discretized with a regular grid of 2 cm of resolution. The
resulting number of points is 140.056. Data were sampled at 51200 samples/s and the CSM is
estimated averaging 4000 blocks of 1024 samples (overlap 50%) using Hanning window. The
frequency resolution obtained is 50 Hz. The eigenvalues of CSM, for each band of interest, are
depicted in Fig. 8, ESM is applied to the first 10 eigenmodes of each band. Also in this test case
the sound propagation through the flow field is calculated using Acoular OpenJet environment.
In this scenario the regularization parameter for LassoLars solver is set to 10−9.

Figure 7: Measurement setup

At 4 kHz and 8 kHz, all methods provide reliable results except the CMF-LassoLars ap-
proach. Indeed, the latter produces empty results for these bands. This is surely due to the
choice of the regularization parameter. Authors are still trying to link this behaviour a correct
choice of the latter. Trailing-edge noise generation mechanism is clearly visible as a linear
source as well as the interaction between leading-edge and shear layer. At 1 kHz, CMF-IRLS
and ESM-IRLS with p = 1 produce maps where the trailing-edge noise is evident, while maps
obtained by CMF-OMPCV, CMF-LassoLars and ESM-IRLS with p = 0.9 may be misleading.
At 2kHz a difference between CMF and ESM is visible. Indeed, CMF identifies only sources at
trailing-edge, while ESM can reconstruct also sources at leading-edge. This is due to the eigen-
mode decomposition of CSM operated in ESM. In fact, the first two eigenmodes are related
to trailing-edge noise while the following three are related to leading-edge noise. The regu-
larization mechanism in CMF tends to suppress sources with less power because of the noisy
environment, while ESM is still able to identify those sources.
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Figure 8: Eigenvalues of CSM
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−9

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 9: 1000 Hz 1/3-octave band (He ≈ 3.4 - 4.1)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−9

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 10: 2000 Hz 1/3-octave band (He ≈ 6.7 - 8.2)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−9

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 11: 4000 Hz 1/3-octave band (He ≈ 13.5 - 16.7)
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(a) CMF-OMPCV (b) CMF-LassoLars λ = 10−9

(c) CMF-IRLS p = 1 (d) CMF-IRLS p = 0.9

(e) ESM-IRLS p = 1 (f) ESM-IRLS p = 0.9

Figure 12: 8000 Hz 1/3-octave band (He ≈ 26.8 - 33.5)
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4 CONCLUSIONS

A study on three-dimensional volumetric mapping with inverse methods has been presented in
this paper. The use of a single planar array makes the source localization task very difficult
because additional issues must be faced with respect to standard acoustic imaging on surfaces.
The strategies described in this paper produced accurate results in this challenging context,
in particular Bayesian approach combined with IRLS demonstrated to be a robust approach.
Another positive aspect of these techniques is that they do not require any additional hardware
or any sort of modification to typical measurement setup, therefore they can be applied also to
measurement data already acquired for standard acoustic mapping.
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