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Abstract

A new inverse method for the radial mode analysis of the broadband sound fields in flow
ducts is presented combining a Compressed Sensing approach and the eigenvalue decompo-
sition of the sound pressure cross-spectral matrix. The Compressed Sensing method allows
the accurate analysis of dominant modes by exploiting the block-structure of the radial
mode spectrum and using sparse sensor arrays. The eigenvalue decomposition of the cross-
spectral matrix is able to separate incoherent sound field constituents, which are sparse
with respect to the in-duct modal spectrum and therefore are suitable for the Compressed
Sensing approach. The application of the new method is demonstrated using measured data
from a laboratory fan test-rig and the method is validated by comparison with results from
a reference method using a full sensor array of 138 sensors. The method’s potential to
reduce the required number of sensors is evaluated by application of a reduced array with
34 sensors, by which the sound field is subsampled at high frequencies. The separation
of incoherent sound field constituents by the eigenvalue decomposition is investigated in
detail and its limitations are identified regarding the use of sparse arrays.

1 INTRODUCTION

The development of axial turbomachinery such as ventilators and aero engines imposes
increasing requirements regarding the reduction of the broadband sound field components.
Effective noise reduction technologies exist to reduce the tonal sound field components, which
occur mainly at blade passing frequency and its harmonics. Technologies for substantial
reduction of the broadband sound field components are subject of ongoing research. The
experimental assessment of such technologies is typically made on the basis of measured
sound power, for which numerous procedures exist in literature [1, 2, 5, [11]. Enghardt et
al. [8]] introduced a radial mode analysis technique, the FSA method, for the decomposition of
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broadband sound fields into their mode constituents. This method was later reformulated by
Jiirgens et al. [10]]. Recently, the application of the FSA method to determine broadband mode
amplitudes for experimental data from a laboratory low-speed fan test rig was presented [18]].

The main drawback of the FSA method is the large number of sensors that is required in
order to perform the matrix inversion, which makes the method not feasible for application in
large-scale fan test rigs. For the assessment of broadband mode analysis methods a laboratory
fan test-rig was set up with a full sensor array consisting of 138 sensors. Attempts to reduce
the required number of sensors are described by the authors in a previous study and are based
on the incorporation of further assumptions on the sound field (cp. [18]). For instance, using a
combination of a single ring equipped with 36 sensors and a line array equipped with 22 sensors
the so-called CAAS (Combined Axial and Azimuthal Sensor Array) method determines the
expected values of the squared mode amplitudes up to a frequency of 5000 Hz under the
assumption that all modes are incoherent.

In this study the extension of a previously developed algorithm for in-duct radial mode analy-
sis based on Compressed Sensing (CS-RMA) is investigated regarding the determination of the
complete cross-spectral matrix of the mode amplitudes. The approach combines the analysis of
mode sound power with the potential of Compressed Sensing to reduce the required number of
sensors and the capability of the eigenvalue decomposition of the sound pressure cross-spectral
matrix to separate incoherent sound field constituents, e.g. as shown by Suzuki and Day [13]].
Compressed Sensing based mode analysis techniques have been introduced in literature with
the aim to reduce the number of required sensors and to reconstruct sound fields consisting of
more modes than the number of sensors, i.e. for subsampling sound fields. In the following, the
method is validated by comparison with results of the FSA method. The accuracy of the method
is evaluated based on the determined sound powers as well as the resulting mode coherences.
Additionally, a reduced and optimized sensor array is used as input to the CS-RMA in order to
investigate the method’s potential to cope with subsampled sound field. The capability of the
eigenvalue decomposition of the sound pressure cross-spectral matrix to separate incoherent
sound field constituents is analyzed for the application of the full and the reduced array and its
limitations are identified regarding the use of sparse arrays.

2 EXPERIMENTAL SETUP

The laboratory fan test rig is shown in Fig. |l|and was described in detail by Tapken et al. [[18]].
The test rig has an overall length of approximately 8 m. The main flow enters the test rig
through a turbulence control screen (not shown in the figure) and a bellmouth nozzle at the
inlet section. At the fan stage, the outer radius is 226.8 mm. The rotor of the low-speed axial
fan stage has 18 blades and the stator consists of 32 vanes resulting in a cut-off design with
respect to the first blade passing frequency. An anechoic termination is installed at the outlet
section in order to minimize acoustic reflections. The mass flow and hence the aerodynamic
operating condition of the rotor is adjusted by use of a throttle. The results given in the present
study are calculated for a rotor speed of 3000 rpm and at operation conditions with a reduced
mass flow ri1,.q = 2.53 kg/s and fan pressure ratio of 7 = 1.0140.
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Figure 1: Overview of the experimental setup: Test rig with an axial fan stage in the center.
Noise measurements are conducted by using sensor arrays consisting of wall-flush
mounted microphones located upstream of the rotor (orange section).

The generated sound field is measured upstream of the axial fan stage with a reference
microphone array consisting of 138 sensors. The microphone array section is illustrated in
Fig.[2] The sensors are arranged in six uniform ring arrays at an axial spacing of 80 mm. Seen
from the inlet, the first three rings are equipped each with 18 sensors, 24 sensors for rings 4
and 5 and 36 sensors for ring 6. Time series of the sound pressure signals with a measurement
duration of 60 seconds were recorded at a sampling rate of 65.536 kHz.

Figure 2: A sensor array consisting of 138 microphones distributed in six rings was used as
input to the FSA method determining the reference results.

For further examination of the potential reduction of the number of sensors for the CS-RMA,
a reduced sensor array is realized by selection of 34 sensor position from the reference
microphone array. The optimal positions were determined by applying the optimization
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procedure for non-uniform ring arrays as described by Behn et al. [3]]. Figure [3 shows the
resulting sensor array, where the first three rings are equipped each with 6 sensors and rings
4 and 5 are equipped each with 5 sensors. For ring 1 to 3 and 6 the same (optimal) sensor
positions are chosen that were proven to be optimal as subset of the underlying sensor array
consisting of 36 regularly spaced sensors. The approach of using a combination of optimized
ring arrays for CS-RMA has been successfully applied at another test rig to the sound field
generated by a single source [4], which in this case consists of fully correlated modes.

o
<

Figure 3: A reduced sensor array consisting of 34 microphones was designed by selecting opti-
mal positions in the individual sensor rings from the full array depicted in Fig. El

3 RADIAL MODE ANALYSIS OF THE SOUND FIELD IN CIRCULAR FLOW
DUCTS

The sound field in circular flow ducts is described by the superposition of an infinite number of
modes, which are obtained from the general solution of the convective Helmholtz equation in
cylindrical coordinates [[19]:

G000 +oo

x r, (P Z Z (A+ . ik;‘n'nx —FAan'eik’;"x) eim(pfmn(r), (1)

m=—ocop=

where incompressible and isentropic flow, a constant axial mean flow profile and sta-
tionary mean temperature and density are assumed. Here A} and A,, denote the
complex amplitudes, f,(r) the radial mode shape function and k, and k,,, the axial
wave numbers of the radial mode with azimuthal mode order m and radial mode or-
der n propagating downstream and upstream. The radial mode shape factor is given by
Smn(r) = (Fun) ™ 1/2( I (Cunt/Ro) + QunYm(Omnr/R,)) as a linear combination of the Bessel
function of first respectively second kind and order m with associated eigenvalues ©,,, and
QOmn, which are obtained for hard-wall boundary conditions. R, is the outer duct radius. The
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eigenvalues depend on the duct geometry, i.e. the outer duct radius and the hub-to-tip ratio 7.
F,., 1s a normalization factor [[16]].

In general, the radiated sound field of an axial fan stage exhibits tonal and broadband com-
ponents, the first consisting of fully coherent modes and the latter being composed of modes
of varying coherences. Both characteristics of the sound field can be modeled by a statistical
description in terms of mean values and spatial cross-spectra. Therefore, the spatial cross-
spectrum is determined for each combination of sensor positions (x,r, @) and (x',7, @) by the
following equation:

1
Sypy = lim E {Tp((x),x,r7 q))p*(a),x/,r,,gD’)}. 2)

T oo

The expectation value E{...} is approximated by time-averaging over a suitably long pe-
riod [18]. From Eq. [I] and 2] the relation between the mode amplitudes and the resulting sound
pressure signal at the microphone array is described in matrix notation as

Spp = WS, W, (3)

where S,, is the cross-spectral matrix of the pressure signals, S,, is the cross-
spectral matrix of the mode amplitudes and W the mode transfer matrix with entries

Winn,+(X,7, @) = eik'j’s”xeimpﬁnn(’")-

The sound power P, of the mode (m,n) transported in axial direction is calculated as [16]):

(1) = im0
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with the static density p, speed of sound ¢, the mode cut-on factor o, and the auto-power

spectrum of the mode amplitude <|A$n 2>. By summation over all radial modes of the

same azimuthal mode order the summed sound power transported in each direction is given

as <P,f> =), <Pnfn>. An additional summation over all azimuthal mode orders finally yields

<Pi> =Y <ij> From the determined cross-spectra of the mode amplitudes the mode co-

herences between two modes (m,n) and (u, V) is calculated as

[(Amnd)|

Chy = .
(Al (| Auv]*)
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3.1 Full Sensor Array (FSA) method

The Full Sensor Array (FSA) method is an inverse method, which determines the complete
decomposition of broadband sound fields into all cut-on duct modes based on the cross-spectral
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matrix of the sensor array. It was introduced in the context of in-duct radial mode analysis by
Enghardt et al. [8] and later reformulated to the description given in the following by Jiirgens et
al. [10]. The FSA method was validated by application to various synthetic and experimental
test cases and was proven to be very accurate and robust (see e.g. [8, [10, [1'7, [18]]), thus serves
for the current study as an established reference. A similar method was presented by Nelson
and Yoon [[12] for the estimation of acoustic source strengths. The FSA method solves Eq. [3|by

making use of the pseudo-inverse W' = [WH W} I wH according to following equation:
N\ H
Saa = W'y, (W) ©6)

3.2 Compressed Sensing based Radial Mode Analysis

In signal processing, Compressed Sensing is a framework for solving underdetermined systems
of linear equations under the assumption that the solution vector is sparse [6]. In terms of the
radial mode analysis this translates to the assumption that the mode spectrum features only a
few dominant modes. Several mode analysis techniques on the basis of Compressed Sensing
are described in literature (cp. (3} 4} 9, 20]), which allow the analysis of fully coherent, tonal
sound field components. One point of interest is the analysis of the tonal components at blade
passing frequency of axial fan stages, which exhibit strongly dominant modes of particular
mode order [19]. The Compressed Sensing based radial mode analysis for fully coherent sound
field components is based on the BOMP-algorithm [7]] under the assumption that sound field
components are composed of groups of dominant modes with the same azimuthal mode order.
Grouping the mode amplitudes in a block vector a,, ok, Whose elements are the sum over

all radial modes of the same azimuthal mode order Z?;”E‘;‘(m) (A,j;i —i—A;i), the method can be
formulated in terms of a minimization problem as follows:

argmin  [|a,, gock||; subject to ||p—Wal|, <e. o
am,BlockECNm,cmfm,

Here Ny cur—on denotes the number of unique azimuthal mode orders in the range of the
propagating modes and € is the assumed measurement noise energy. The BOMP-algorithm
solves Eq. [/| by performing two fundamental steps iteratively: identification of the currently
dominant azimuthal mode order and combined update of all dominant mode amplitudes, which
were identified up to the current iteration. After each iteration the contribution of the dominant
modes to the measured sound pressure signal is subtracted. All radial mode orders of the
identified dominant azimuthal mode orders are determined at each iteration by inversion of a
submatrix W,, pj,cx of the analysis matrix W. Similar to the Compressed Sensing method for
the azimuthal mode analysis (cp. [3]]) the BOMP-algorithm is extended by a deconvolution
step subsequently to the iterative determination of the dominant mode amplitudes enabling the
estimation of the non-dominant modes in the case of strongly ill-conditioned or subsampled
measurements and resulting in the complete mode amplitude vector a.

In the present study, an extension of the method presented by Behn et al. [4] is investigated
regarding its applicability to the analysis of broadband sound fields. First, the sound pressure
cross-spectral matrix is decomposed into its coherent constituents by use of the eigenvalue
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decomposition
S,p = UAU?, 8)

where U is a unitary matrix consisting of orthonormal eigenvectors u; and A is a diagonal matrix
with the corresponding eigenvalues A; with i = 0,..., Ny, — 1. This follows from the fact that
the cross-spectral matrix is positive semidefinite and Hermitian. Similar to the generalized
inverse beamforming introduced by Suzuki [13| [14] the individual eigenvectors are weighted

with their eigenvalue
vi= /A, ©)

and used as input to the Compressed Sensing based radial mode analysis in Eq.[7| yielding the
formulation of the Compressed Sensing method for the analysis of broadband sound fields:

argmin  ||a,, prock,||, subject to [|v; — Wa;||, < €. (10,
am.BlackiE(cNm,Cmfon

Applying the BOMP-algorithm to Eq.[I0]yields the mode spectra a; corresponding to the eigen-
values A;. As a result, the cross-spectral matrix of the mode amplitudes is calculated by super-
posing the contributions of the individual coherent constituents:

Nmic—1
Sww= Y aal. (11)
i=0

3.3 Condition analysis of FSA method and the CS-RMA method

Due to the inversion of the Gram matrix W”W the FSA method is sensitive to the condition
number k(W) (cp. Ref. [12]), which is shown for the full and the reduced array as a function of
frequency in Fig.[] Since during the iterative process of the BOMP-algorithm only submatrices
of the analysis matrix W are inverted the CS-RMA method is less prone to errors caused by
a large condition number. In general the condition is impaired close to the cut-on frequencies
of the duct modes. The axial wavenumbers of modes close to their cut-on frequencies are
generally very small and cause difficulties for the radial mode analysis procedure due to
resulting minor phase differences of the respective mode components propagating down- and
upstream. In the case of the reduced array, the non-uniform sensor positions induce additional
correlations between each combination of cut-on modes [3] resulting in an increase of the
condition number. The condition numbers of both arrays show small values of less than 10 up
to about 1.3 kHz. At this frequency the modes (+1, 1) have their cut-on frequency. The largest
peaks of the condition number are located at the cut-on frequencies of the mode orders (£2,1),
(0,2) and (£6,0). In the case of the full array, the condition number increases steadily above
the cut-on frequency of the mode (0,2).
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Figure 4: Condition number k(W) for the full and the reduced sensor array.

4 APPLICATION OF THE MODE ANALYSIS TECHNIQUES TO
EXPERIMENTAL DATA

4.1 Verification of the Compressed Sensing based radial mode analysis

To investigate the accuracy of the CS-RMA method the method is applied to the full sensor
array equipped with 138 sensors and the outcome of the method is compared to the refer-
ence, the FSA method. In Figure [5 the summed sound power for the upstream propagating
modes generated by the axial fan and the reflected, downstream propagating modes are
depicted. Peaks occur at the harmonics of the blade passing frequency (BPF) at 900 Hz
and 1800 Hz and further in narrow- and broad-bands, which were found to be caused by
the interaction of the rotor with incoming inhomogeneities of the turbulent flow field, the
turbulent flow field interactions of rotor and stator and flow separations close to the rotor hub
(cp. [18]). The results are identical up to a frequency of about 1.9 kHz, above which the in-
creasing condition number (see Fig. d)) causes the deterioration of the accuracy of both methods.

Figure [6] shows the sound power of the upstream radiated modes with radial order n = 0 as
outcome of the FSA and the Compressed Sensing method. The modal characteristics coincide
very well, particularly for the dominant structures. The same agreement between the results
of both methods is found for the comparison of the mode coherences of the radial modes
of azimuthal mode order m = O with all other modes shown in Fig. Tapken et al. [18]
showed that only modes with the same azimuthal mode order are strongly correlated, whereas
modes of different azimuthal mode orders have coherences close to zero as is indicated by
the grey lines in Fig. [/l These findings support the assumption that the radial mode spectrum
provides block-sparsity with respect to the azimuthal mode order, which is exploited by the
BOMP-algorithm.
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Figure 5: Verification of CS-RMA: Shown are the total sound powers determined using the FSA
and the CS-RMA method, both applied to the full sensor array equipped with 138
sensors.
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Figure 6: Comparison of the mode sound powers for radial mode order n = 0 determined using
the FSA and the CS-RMA method, both applied to the full sensor array.

4.2 Application of the Compressed Sensing method using a reduced sensor array

In Figure [§] the summed sound power is depicted for the case the CS-RMA is applied to the
reduced sensor array consisting of 34 sensors. The outcome is compared to the result of the
FSA method in two variants: (i) FSA applied to the full array (138 sensors), (ii) FSA applied
to the reduced array (34 sensors). At low frequencies below 400 Hz the results obtained with
the reduced array are identical to the full array. Above the cut-on frequency of the radial
modes (£1,0) at approximately 450 Hz deviations from the reference results are found for
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Figure 7: Comparison of the mode coherences of the radial modes of azimuthal mode order
m = 0 with all other modes determined using the FSA and the Compressed Sensing
method. Correlations of modes m = 0 with modes m # O are given by grey curves.

the reflected components, which increase in the vicinity of the cut-on frequencies of higher
order modes. In general the results for the Compressed Sensing method determine the summed
sound power of the radiated upstream modes accurately up to 1.9 kHz and overestimates the
sound power of the reflected modes above 1.2 kHz. It should be noted that within the frequency
range up to 2 kHz the maximum number of propagating modes is 44 and subsampling occurs
above the cut-on frequency of the mode (0,2) at 1.69 kHz. The application of the FSA method
to the reduced array unexpectedly delivers almost the same results as the CS-RMA up to
1.5 kHz. However, at f > 1.5 kHz large deviations occur due to ill-conditioning of the system.
The results presented here prove the minor sensitivity of the CS-RMA to the ill-conditioned
analysis matrix W at high frequencies.

The mode sound powers of the upstream radiated modes with radial mode order n = 0
are shown in Fig. [0] using the reduced sensor array. Good agreement is achieved between
the Compressed Sensing results and the reference results (FSA method, full array) in Fig. [9]
Overall the spectral characteristics are detected almost identically for all modes. Towards
2 kHz the sound power level of the radial mode (0,0) increases in the same way as the reference
results, which is due to the limitations of the full sensor array. Despite the fact that the FSA
method is not intended to be used with sparse sensor arrays the mode sound powers agree well
up to 1.5 kHz between both methods.

The determined mode coherences of the modes of azimuthal mode order m = 0 with all
other modes shown in Fig. [I0] reveal increased differences to the reference results for both
methods. The strength of the correlation between the modes of the same azimuthal mode order
m = 0 is lower and the fluctuation over frequency is significantly increased in comparison to
the reference results even in the frequency range, where the number of propagating modes
is smaller than the number of sensors. Interestingly, the resulting mode coherences of both
methods differ significantly in the frequency up to 1.5 kHz, whereas the mode amplitudes are

10
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Figure 8: Comparison of the total sound power determined using the FSA and the Compressed
Sensing method with the reduced sensor array. The results from the full array using
the FSA method are considered as the reference.
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Figure 9: Comparison of the mode sound powers for radial mode order n = 0 determined using
both the FSA and the Compressed Sensing method with the reduced sensor array.

in good agreement.

The deviations may be caused by the non-uniform sensor spacing and the resulting mutual
coherence that is induced through the analysis matrix W [3]]. The mutual coherence u of the
matrix W is defined as:

[{wi w;)|
1< j<Nmodes || Wil 2] W ]|2”

p(W) = (12)

where w; denotes the i-th column vector of the analysis matrix W. With respect to the azimuthal

11
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Figure 10: Comparison of the mode coherences of the radial modes of azimuthal mode order
m = 0 with all other modes determined using the FSA and the Compressed Sensing
method with the reduced sensor array.

mode decomposition the optimized ring arrays of the reduced array have a mutual coherence of
0.437 for rings 1,2,3 and 6 and 0.447 for rings 4 and 5. The resulting mutual coherence for the
radial mode analysis is frequency-dependent and generally yields larger values than the mutual
coherences of the single rings due to the influence of the axial wavenumber distribution of the
radial modes.
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Figure 11: The block-coherence g, (W) of the analysis matrix using the reduced and the full
sensor array. The Mutual coherence L (W) is given only for the reduced array.

Regarding the CS-RMA based on the BOMP-algorithm the block-coherence g, [7] is

12
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considered defined as:

1 1/2 H
ock (W) = max Amax (Win(s)" Wp(2)),
MBI k( ) *|mmux|§57t§|mmax|’s7ét\/z(nmax(s)+1)2(nmax(t)—|—1) ( ( ) ())
(13)

where A,ux (Wm (s)H Wm(t)) denotes the largest eigenvalue of the resulting matrix from the
product of submatrices W,,(s)? and W,,(¢) corresponding to the azimuthal mode orders s and
t. Figure|11|shows block-coherence g .« (W) of the analysis matrix for the reduced array and
the full array and the mutual coherence (W) in case the reduced array is applied. The mutual
coherence is very sensitive at the cut-on frequencies of each radial mode and further indicates
a relation to the development of the condition number due to the steady increase above 1 kHz.
Above the cut-on frequency of the first higher azimuthal mode order the block-coherence yields
values of about 0.3 resulting in the capability to determine the amplitudes of all radial modes of
SBlock < 1/WUBlock = 3 dominant azimuthal mode orders per eigenvector. The block-coherence
of the full array yields values below 0.1 and is stable in the vicinity of the cut-on frequen-
cies. The block-coherence of the reduced array is impaired close to the cut-on frequencies of
each higher azimuthal mode orders, but is insensitive to the cut-on of higher radial mode orders.

The general improvement of the coherence when the block-structure of the radial mode
spectrum is exploited supports the approach followed here for the CS-RMA. The authors
believe that the frequency range of the analysis and the number of dominant modes, which is
determined, can be extended despite of the low sensor count, if the positions for the sensor array
optimization are completely free w.r.t. the axial and circumferential sensor positions. However,
further investigation is necessary in order to profoundly understand the relationship between the
analysis accuracy of the CS-RMA, the condition and the block-coherence of the analysis matrix.

It appears that the reconstruction of the mode coherences poses greater difficulties for the
radial mode analysis with a reduced number of sensors than the reconstruction of the mode
amplitudes. A possible reason for this may be found in the capability of the eigenvalue decom-
position to separate incoherent modes, which is a key step in the mode analysis procedures for
broadband sound fields in the current study.

5 EVALUATION OF THE CAPABILITY OF THE EIGENVALUE
DECOMPOSITION FOR SEPARATING INCOHERENT MODES

The findings of the previous section raise the question, whether the eigenvalue decomposition
of the cross-spectral matrix returns eigenvectors, which consist only of the contribution
of correlated modes. If this is the case, the mode spectra corresponding to the individual
eigenvalues are sparse and the CS-RMA is expected to have a high accuracy for the mode
analysis.

In Figure [I2] the mode spectra corresponding to the ten largest eigenvalues are plotted for

the second blade passing frequency at 1800 Hz. The mode spectra are obtained by analysis
of the individual weighted eigenvectors u; for i = {1,...,10}. Using the full array, the first

13
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Figure 12: Comparison of the mode spectra corresponding to the ten largest eigenvalues at the
second blade passing frequency of 1800 Hz determined using the FSA method with
full sensor array and the Compressed Sensing method with the reduced sensor array.

eigenvalue is dominated by the contribution of the rotor-stator interaction mode of order
m = —4. The following eigenvalues result in mode spectra, which yield levels much below the
first eigenvalue and are not sparse. Interestingly, the interaction mode is the weakest mode in
the mode spectra of the eigenvalues 3 to 10.

In case of the reduced array, the first eigenvalue for the analysis contains the contribution
of the rotor-stator interaction mode and the resulting mode spectrum is similar to the FSA
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Figure 13: Comparison of the mode spectra corresponding to the ten largest eigenvalues at a
broadband component of 1200 Hz determined using the FSA method with full sensor
array and the Compressed Sensing method with the reduced sensor array.

method. At the second blade passing frequency the sound field is subsampled when the
reduced array is used. The levels of the non-interaction modes, particularly mode (—2,0), are
overestimated compared to the reference results. The individual mode spectra do not show
contributions of all modes for each eigenvalue, which is a result of the iterative determination
of the dominant modes and the subsequent estimation of the non-dominant modes in the
Compressed Sensing method. The estimation of the non-dominant modes is not performed if

15



7" Berlin Beamforming Conference 2018 Behn, Pardowitz and Tapken

it has a significant impact on the amplitudes of the dominant modes. Nevertheless, it is proven
that the eigenvalue decomposition successfully separates the dominant sound field due to the
rotor-stator interaction mechanism and the other sound field constituents at the second blade
passing frequency for both sensor arrays.

The analysis of the individual mode spectra for the ten largest eigenvalues at a broadband
component of 1200 Hz is depicted in Fig. [I4] exemplarily. The number of propagating modes
is 16 and hence, the sound field is oversampled for both array configurations. Here the mode
spectra corresponding to the first seven eigenvalues exhibit strong sparsity with only one or two
dominant modes. In agreement to the observation in sec. [ that the modes of azimuthal mode
order m = 0 are strongly correlated, the modes (0,0) and (0, 1) occur as dominant modes in the
same eigenvalue using the FSA method and the full array. The mode spectra of eigenvalues 8
to 10 have very low levels of more than 20 dB below the mode (0, 1).
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g 0.0 (-3,0) 0.0
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o

Coherence

o
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Radial mode order
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(a) FSA, full array (b) CS, reduced array

Figure 14: Comparison of the mode coherences at a broadband component of 1200 Hz deter-
mined using the FSA method with full sensor array and the Compressed Sensing
method with the reduced sensor array.

In case of the reduced array, only the first three eigenvalues yield mode spectra with strong
sparsity, where the levels of the dominant modes (—3,0), (—2,0) and (—1,0) each are almost
identical to the results using the full array. The mode spectra of the following eigenvalues
show significant contributions of all modes and indicate the incapability of the eigenvalue
decomposition to separate the modes. This can diminish the accuracy of the mode analysis of
both methods considered here, FSA and Compressed Sensing. Figure [I4] presents the mode
coherences between all cut-on modes at 1200 Hz for the configurations considered above,
FSA using the full array and Compressed Sensing using the reduced array. For the first, it
is identified that all modes of different azimuthal mode order are uncorrelated and only the
modes of order m = 0 have a high coherence. For the latter, significant coherences occur for
modes with different azimuthal mode orders, which is the result of the failing separation of the
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incoherent modes by the eigenvalue decomposition. It is found that these observations hold
also for the subsampled case at higher frequencies and hence, the limitations of the eigenvalue
decomposition regarding the use in the CS-RMA are confirmed.

6 CONCLUSION

The present study introduces a new inverse method for the radial mode analysis of broadband
sound fields in flow ducts combining a Compressed Sensing approach and the eigenvalue de-
composition of the sound pressure cross-spectral matrix. It is shown by comparison with results
from the reference method, the FSA method, that the CS-RMA gives very accurate results us-
ing a full sensor array with 138 sensors. The method allows the reconstruction of the complete
cross-spectral matrix of the mode amplitudes and hence, enables the evaluation of mode sound
power and mode coherences. The application of a reduced sensor array, which is selected from
the full sensor array, reveals the good reconstruction of the mode sound power. The mode co-
herences in case the reduced array is applied show significant deviations from the reference
results. A possible reason is the failing capability of the eigenvalue decomposition to separate
the incoherent modes for over- and subsampled sound fields, if the mode spectrum does not fea-
ture particularly dominant modes. Further investigation of the relationship between the analysis
accuracy of the CS-RMA and the characteristics of the applied sensor array is necessary. The
identification of a different decomposition of the cross-spectral matrix in order to separate the
incoherent sound field constituents and its incorporation into the CS-RMA is part of ongoing
research.
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