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ABSTRACT

Delay-and-sum (DAS) beamforming can be described as a linear convolution of an un-
known sound source distribution and the microphone array response to a point source, i.e.,
point-spread function. Deconvolution tries to compensate for the influence of the array
response and reveal the true source distribution. Deconvolution is an inverse problem in
which measurement noise can become dominant and yield meaningless solutions if the
problem is not regularized (typically with Tikhonov regularization or a sparsity constraint).
Therefore, the obtained solution estimate depends on the choice of regularization parame-
ter, which in turn is highly problem dependent. Additionally, if sound sources are located
near the edges of the computational domain, a discontinuity of sound power occurs that can
result in a ”ringing” effect in the deconvolved image. To remedy this, various boundary
conditions can be assumed to model the sound field behaviour outside the computational
domain. In this paper, noise quantification from deconvolution is investigated to better un-
derstand the derived effect on absolute noise levels. Using benchmark test cases from the
aero-acoustic community, absolute noise levels is obtained from deconvolution and com-
pared to that of the test cases. The effects of regularization and boundary conditions are
discussed and practical usage scenarios are given.

1. INTRODUCTION

Delay-and-sum (DAS) beamforming is a popular signal processing technique for localizing
aero-acoustic sources. Due to inadequate resolution at low frequencies and grating lobes at high
frequencies [1], deconvolution methods can be applied to improve the source localization [2].
The outcome is typically a more precise source localization with the ability to obtain absolute
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noise levels from selected regions. Classical deconvolution algorithms, such as DAMAS [3],
CLEAN [4], NNLS [5], RL [6, 7] have been shown to produce successful reconstructions [2,
8–10]. However, these algorithms and the reconstructions they produce still have limitations
and an extended computational cost is one of the main drawbacks.

The deconvolution problem is typically formulated as a linear least-squares problem that can
be readily solved by a number of available algorithms [11]. However, in practical usage sce-
narios, some care is required to obtain trustworthy and physical solutions. The deconvolution
problem is often large, which makes a solution infeasible for some (higher-order) algorithms.
Additionally, due to the ill-posed nature of the deconvolution problem, regularization is typi-
cally added to avoid solutions dominated by noise [12].

There has been a natural interest from the aero-acoustic community to adopt algorithms that
originate from the fields of image deblurring and inverse problems, e.g., [13–18]. While these
advances show promising results for the deconvolution problem, it can be difficult to evalu-
ate the reconstructions without a common reference. To promote quantitative assessments of
microphone array techniques, standardized test data sets (synthesized and experimental) have
recently been made publicly available [19]. The first quantitative comparison of deconvolution
algorithms across several different research institutions was given in [20, 21].

The purpose of this work is to investigate how absolute noise levels, derived from beam-
forming deconvolution, are affected by adding regularization and boundary conditions. The
synthetic data set described in [20] is used in this work.

Two common regularization strategies are applied to a deconvolution algorithm: A squared
`2-norm and a sparsity inducing `1-norm. Combined with 7 different boundary conditions, abso-
lute noise levels are reconstructed and evaluated against the reference spectra that accompanies
the test data set. To give a fair comparison between different boundary conditions and regular-
ization terms, a so-called proximal gradient algorithm (FISTA [13, 22]) is chosen to perform the
deconvolution task. The theory behind proximal methods originates from convex optimization
theory [23] and has the advantage that a single implementation of the deconvolution algorithm
can evaluate several different regularization strategies.

The data generation, analysis and figures used for the paper is available online [24] in the
spirit of reproducible research.

This paper is organized as follows: In Sec. 2, the problem formulation and beamforming
framework is described. The deconvolution problem is then stated and the proximal approach is
introduced for adding regularization. The simulation study in Sec. 3 is divided into two cases:
the first focuses on boundary conditions, and the second on choice of regularization.

In the following, vectors are denoted by boldface lowercase letters and matrices by boldface
uppercase letters.

2. BEAMFORMING DECONVOLUTION

Consider the sound pressure measured using a microphone array with M microphones due to a
single point source located at rs. Assuming free-field conditions and no flow, the sound pressure
at the m’th microphone, rm, is,

p(rm) =
q(rs)

|rs− rm|
e− jk|rs−rm| (1)

2



7th Berlin Beamforming Conference 2018 Lylloff and Fernandez-Grande

where q is the strength of the source, |rs− rm| is the distance from the sound source to the
m’th microphone, and k is the wave number [25]. By collecting the sound pressure from all
microphones and arranging them in a vector p≡ [p(r1), p(r2), . . . , p(rM)]T , and computing the
cross spectral matrix C≡ E{ppH}, the mean-squared beamforming output for a focus point r f
is given by,

b(r f ) = v(r f )
HCv(r f ) (2)

where v(r f ) is a steering vector that contains transfer functions from the microphone array to
the focus point, (·)H is the hermitian transpose, and E{·} is the expectation operator. Computing
the real part of Eq. (2) for all focus points in the area of interest produces a beamforming map.

The formulation of the steering vector v can be found in different variations in the literature.
In [26] four variants are collected and identified that can either reconstruct the source position
or level correctly. In this work, formulation III, that was found to reconstruct the level correctly,
is used,

vm(r f ) =
e− jk(|r f−rm|−|r f−r0|)

|r f − r0||r f − rm|∑N
j=1 |r f − r j|−2

. (3)

Assuming incoherent sources, the cross-spectral matrix C can be modelled as

C̃ =
N2

∑
n=1
|q|2 ·v(rn)v(rn)

H , (4)

where (·) is the spectral average. The beamforming output in Eq. (2) can thus be modelled as

b(r f ) =
N2

∑
n=1
|q|2 ·PSF(r f ,rn) (5)

where n is the n’th grid point in a N×N computational grid, PSF is the beamforming output
due to a unit-power point source, i.e., point-spread function,

PSF(r f ,rn) = v(r f )
H [v(rn)v(rn)

H]v(r f ). (6)

The PSF array, P, is the matrix, or image, of a source placed in a particular grid point rn.
Computing P for all grid points and stacking them column-wise produces the blurring matrix A
with dimensions N2×N2. If the point-spread function is shift-invariant, Eq. (5) is modified to

b(r f ) =
N2

∑
n=1
|q|2 ·PSF(r f − rn) (7)

which corresponds to a linear convolution of the source distribution and a single point-spread
function. The PSF array, P, is then only computed for a source located at the centre of the
domain and the blurring matrix A is a block Toeplitz with Toeplitz blocks (BTTB) matrix. It is
known that the Fast Fourier Transform can be used to efficiently compute matrix vector products
Ax without forming A explicitely [12].
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The deconvolution problem is given by,

minimize
x∈RN×N

1
2‖Aq−b‖2

2, (8)

where q =
[
|q1|2, |q2|2, . . . , |qN2 |2

]
, Aq is a two-dimensional convolution product computed by

F−1 [F(q)�F(P)], where F and F−1 is the 2D Fourier Transform operator and its inverse,
and (�) is the element-wise product. The computational advantage comes from the fact that the
convolution Aq can be performed by the Fast Fourier Transform without forming the blurring
matrix A. Due to its periodic nature, padding is required to avoid wrap-around errors [27]. This
padding impose a boundary condition on the beamforming map, i.e., the assumed behaviour
of the sound field outside the field of view. The derived effect of boundary conditions on
reconstructed noise levels are the focus of this paper.

2.1. The Proximal Approach

The optimization problem stated in Eq. (8) is convex, which means that if a minimum of the
deconvolution problem can be found it is guaranteed to be a global minimum of the optimization
problem [28].

The starting point in Eq. (8) can provide useful reconstructions, however, a non-negativity
constraint is typically added to the optimization problem due to the non-negative source powers,
q,

minimize
q∈RN×N

1
2‖Aq−b‖2

2 + I+(q)

where I+(q) =

{
0, if q ∈ Rn

+

∞, otherwise,

(9)

where Rn
+ is the non-negative orthant [28]. This formulation is equivalent to the non-negative

least squares problem NNLS [2, 5]. What is clear from this formulation is that the objective
function is no longer differentiable and deconvolution algorithms that depend on the first or
second derivative will break.

With the proximal approach, the optimization problem is split into differentiable and non-
differentiable parts. The proximal operator of a non-differentiable function g, is given by

proxg(v) = argmin
x

(
g(x)+ 1

2‖x− v‖2
2
)
. (10)

proxg(v) can be interpreted as a point that compromises between minimizing g and being near
v [23]. For example, the proximal operator of the indicator function in Eq. (9) is the Euclidean
projection of q onto Rn

+, i.e., max(0,q).
With this framework in place, it is possible to introduce additional variations of the optimiza-

tion problem (9). In this work, two well-known formulations will be applied, namely a squared
`2-norm regularization term

minimize
q∈RN×N

1
2‖Aq−b‖2

2 +λ‖q‖2
2 + I+(q) (11)
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which is a constrained variation of Tikhonov regularization [29], and a `1-norm regularization
term,

minimize
q∈RN×N

1
2‖Aq−b‖2

2 +λ‖q‖1 + I+(q), (12)

which induce sparse solutions and is similar to compressive sensing or LASSO [30]. Other
interesting variations that is straight-forward to implement with the proximal approach, include
the edge-preserving Total Variation Denoising [31] and Elastic Net [18].

The deconvolution algorithm, which is used in this study, is based on a fast proximal gra-
dient algorithm, FISTA [22], that has been applied to beamforming deconvolution in [13] and
extended in [14, 32].

2.2. Boundary Conditions

Boundary conditions model the behaviour of the beamforming map outside the field of view
[33]. Consider for instance the simple example of a 3×3 matrix X,

X =

 1 2 3
4 5 6
7 8 9

 .
The most common boundary condition is a zero boundary condition. When applied to X, the
matrix is embedded into a larger matrix padded with zeros,

XzeroBC =

 0 0 0
0 X 0
0 0 0

 .
This boundary condition is a common choice when performing convolutions via the Fast Fourier
Transform [27]. If the beamforming map is confined to the centre and nearly zero at the edges,
a zero boundary condition might be a realistic model of the behaviour outside the field of view.
However, if the beamforming map is nonzero, as is often the case at low frequencies, the sound
power ”spills over the edge” of the computational domain and a discontinuity occurs that can
affect the reconstructed sound map. Four common choices of boundary conditions are shown
in Fig. 10.

An additional boundary condition is proposed in this work, the extended BC, that simply
requires a re-computation of the beamforming map in an extended computational domain that
is larger than the original. The ”padding” in this case is just the computed extension of the
beamforming map and thus relieves sharp discontinuities at the edge. In all cases, the padding
is removed after deconvolution to the region of interest.

3. SIMULATION STUDY

In this study, a synthetic test case of four incoherent point sources are considered (Benchmark
7: Four Monopole Sources [19]). The sources are arranged in a square with side lengths of
0.2 m and a microphone array with 64 microphones is placed at a distance of 0.75 m (see Fig.
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1). There are two subcases included in the data set: subcase a, all sources have equal power,
and subcase b, where the sources have different power. Reference spectra of each source are
included in the data set and the reconstructed sound maps presented in the following are eval-
uated against the reference by the level difference ∆L = L−Lref for each individual frequency
bin. The reconstructed levels are estimated by a spatial integration over a square with a side
length of 0.1 m centered at the nominal source position.

−0.5 0 0.5

−0.5

0

0.5

x[m]

y
[m

]

Microphones
Source 0
Source 1
Source 2
Source 3

Figure 1: Geometry of the setup.

3.1. Case I: Boundary Conditions

The purpose of this case is to analyse the effects of boundary conditions at low frequencies
when the beamforming map has a wide mainlobe and a large discontinuity appears at the edge.
Four monopoles with equal power (Benchmark 7, subcase a [19]) is reconstructed from beam-
forming maps at 7 frequencies f = [700,800,1000,1500,2000,2500,5000] Hz, each with a bin
width of 50 Hz. Additionally, 6 different boundary conditions (and one without) is applied to
the beamforming maps, this gives a total of 49 reconstructions. The computational domain is
restricted to x = y = [−0.2;0.2] m and the measurement distance is z = 0.75 m. The maximum
number of iterations with the deconvolution algorithm is set to 3000.

Beamforming maps padded to size (2N− 1)× (2N− 1) by 6 different boundary conditions
(zero, replicate, symmetric, periodic, reflect, and the proposed extended BC) are shown in Fig.
2. Due to the symmetry of the source distribution, the symmetric, periodic, and reflect boundary
conditions, coincide and have similar appearances. The beamforming maps at f = 1000 Hz and
f = 1500 Hz are shown in Fig. 3. From a visual inspection, the four sources are barely separated
at f = 1500 Hz, and at f = 1000Hz it is no longer possible to identify them.

The reconstructed source levels for Source 3 are shown in Table 1. For the sake of brevity,
results for the remaining sources, which is very similar, are omitted. All reconstructions at and
above 1500 Hz show small level deviations from the reference within ±1 dB. Below 1500 Hz,
only the extended boundary condition, is capable of reconstructing the source level correctly.
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Zero BC Zero BC Replicate BC Replicate BC

Symmetric BC Symmetric BC Periodic BC Periodic BC

Reflect BC Reflect BC Extended BC Extended BC

Figure 2: Padded beamforming maps at 1000 Hz (left of each pair) and 1500 Hz (right of each
pair). The area of interest is x = y = [−0.2;0.2] m padded to x = y = [−0.4;0.4] m
and the dynamic range is 18 dB.
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Figure 3: Case I: Beamforming maps at f = 1000Hz and f = 1500 Hz. Circles indicate posi-
tions of point sources.

Surprisingly, the no BC case, without any padding, performs as well as the other cases. Re-
constructed source maps for two boundary conditions (zero BC and extended BC) are shown in
Fig. 4. Again, for the sake of brevity, only two reconstructions are shown. The remaining re-
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Table 1: Level differences (Source 3) from reference ∆L = L−Lref [dB]. (–): no data.

f [Hz] 700 800 1000 1500 2000 2500 5000

no BC – – – 0.1 0.7 0.8 0.9
zero BC – – – 0.5 0.8 0.9 0.7
replicate BC – – – 0.5 0.8 0.9 0.8
symmetric BC – – – 0.0 0.6 0.8 0.9
periodic BC – – – 0.0 0.7 0.8 0.9
reflect BC – – – -0.1 0.6 0.8 0.8
extended BC – 0.8 0.8 0.6 0.7 0.8 0.7

constructions are very similar to the zero BC case. Upon inspection of the reconstructed maps
(Fig. 4), it is clear that the reconstructions become useless below a certain frequency limit.
This cut-off frequency occurs around 800 Hz for the extended BC but for all other boundary
conditions it is around 1500 Hz.

The Rayleigh criterion is commonly used as a measure of resolution and describes the small-
est angular separation at which two sources can be separated [34],

R≈ 1.22
L
D

λ , (13)

where L is the (on axis) measurement distance, D is the array aperture and λ the wavelength.
The resolution as function of frequency for this specific case, with L = 0.75m and D = 1.5m is
shown in Fig. 5.

At the cut-off frequency of the extended BC, 800 Hz, the resolution is approximately 0.26 m
and at 1500 Hz, which is the cut-off frequency of the remaining boundary conditions, the res-
olution is approximately 0.14 m. These numbers indicate that there is a relationship between
resolution, cut-off frequency and boundary condition. The shortest distance from a source to
the edge of the unpadded beamforming map is 0.1 m, except for the case of extended BC, that
is padded with the natural extension of the beamforming map, where the shortest distance is
0.3 m. One possible explanation is that when the resolution is too low, the sources cannot be
separated from edge and deconvolution fails to reconstruct correctly. The cut-off frequency due
to that interpretation is from Eq. (13),

fmin = 1.22
L
D

c
Rmin

, (14)

where c is the speed of sound and Rmin is the shortest distance from a source to the edge of the
beamforming map. For Rmin = 0.1, fmin = 2092Hz. This estimate is much higher than what
was found empirically above. The cut-off frequency in Eq. (14) can serve as a rule of thumb
for a lower frequency limit of deconvolution given certain boundary conditions, however, it is
still based on the Rayleigh criterion which is a convenient reference point for resolution rather
than a strict physical limit [35].
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Figure 4: Case I: Reconstructed source maps at f = 1000Hz and f = 1500 Hz. Circles indicate
positions of point sources.

3.2. Case II: Regularization

The purpose of this case is to investigate the effects of regularization on absolute noise lev-
els. Similar to Case I (Sec. 3.1), four monopole sources are considered, however, now sub-
case b from [19] is used, where the source powers are different. Source 0 is the strongest,
Source 1 is -6dB below, Source 2 is -12 dB below Source 0, and Source 3 is -18dB be-
low Source 0. The source levels are reconstructed from beamforming maps at frequencies
f = [500,550, . . . ,11250] Hz with a bin width of 50 Hz. Two regularization terms are added:
a `1-norm and `2-norm term defined in Eq. (11) and (12), respectively, each with 20 dif-
ferent regularization parameters in the range λ = [10−5;102]. The domain of interest is
x = y = [−0.5;0.5], which gives a cut-off frequency fmin = 523 Hz according to Eq. (14). A
zero boundary condition is chosen since it was found in Case I that, above the cut-off frequency,
all boundary conditions could reconstruct absolute noise levels equally well. The maximum
number of iterations with the deconvolution algorithm is again set to 3000.
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Figure 5: Resolution due to the Rayleigh criterion.

The beamforming maps at f = 1000 Hz and f = 1500 Hz are shown in Fig. 6 and a com-
parison between the reconstructions with the two regularization methods are shown in Fig. 7.
As expected, the `1-norm method induce a more sparse reconstruction than the `2-norm. By
visual inspection it seems that only two sources are identified properly by the `1-norm method
whereas three is identified by the `2-norm method.
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Figure 6: Case II: Beamforming maps at f = 1000Hz and f = 1500 Hz. Circles indicate posi-
tions of point sources.

The deconvolution problem is solved for every regularization parameter and regularization
method in the frequency range of interest. Level differences ∆L are computed by comparing the
reconstruction level of each source, determined via spatial integration, with the reference levels
from the data set. Figure 8 shows ∆L as function of regularization parameter for 1500Hz and
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Figure 7: Case II: Reconstructed source maps at f = 1000Hz (left) and f = 1500Hz (right) with
`1-norm and `2-norm regularization. Circles indicate positions of point sources.

3000Hz. From this it is clear that both methods can actually identify three of the four sources
but due to the chosen regularization parameter, λ = 10−2, only two is visible with the `1-norm
method at 1500 Hz.

For small λ values (< 10−4), both regularization methods perform well in terms of recon-
structed sound levels. This is not an observation that holds in general. The data set has a high
signal-to-noise ratio and regularization is not required to obtain good reconstructions. For real-
world problems, measurement noise will in general require a need for regularization. For larger
values of λ more emphasis is put on the regularization term and both methods display knee-
points at which the reconstruction level drops significantly. The λ value at which this point
occurs seems to depend on both frequency and signal-to-noise ratio.

The stronger the source, the larger is λ at the knee-point. This behaviour is in line with one
of the main drawbacks of `1-norm regularization: When λ increases, the source distribution
becomes increasingly more sparse and sound power is aggregated around fewer points. The
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Figure 8: Case II: Level differences for the four sources at f = 1500 Hz (above) and f = 3000
Hz (below) as function of λ .

sound power of the weakest sources is absorbed into the stronger ones.
Increasing the frequency seems to move the knee-point towards lower λ . This pattern is most

clear for `1-norm regularization. On possible explanation for the behaviour has to do with the
complexity of the underlying model, i.e., point-spread function. The width of the mainlobe
of the point-spread function increases as the frequency decrease. This means, that the number
of linearly independent rows/columns in the point-spread function, i.e., matrix rank, decrease
with frequency, thus the complexity decreases. With lower complexity, a larger regularization
is required to induce sparsity.

Using the reference levels from the data set, optimal regularization parameters can be found
from the reconstructions. The optimal λ is determined for each frequency to be the largest one
that gives a reconstruction level within ±2 dB of the reference, |∆L| < 2 dB. These values are
shown in Fig. 9 for the two regularization methods. The behaviour of the `1-norm method is in
line with the observation from Fig. 8: λ increases with decreasing frequency and a clear divide
is seen between the sources. The `1-norm regularization can reconstruct absolute noise levels
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Figure 9: Case II: Optimal λ values as function of frequency for `1-norm (above) and `2-norm
(below).

within±2 dB for all but the weakest source in the range from 500 Hz to approximately 10 kHz.
The `2-norm regularization seems better at reconstructing absolute levels for the weakest source,
however, by inspection of the deconvolved maps (omitted here for brevity), the resolution is very
low and not useful for source localization.
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4. CONCLUSIONS

Absolute noise levels have been reconstructed with beamforming deconvolution and the effects
of boundary conditions and regularization have been evaluated against the reference levels.

Seven different boundary conditions have been applied, six of them commonly seen in the
deblurring literature, and it has been found that they all give rise to good reconstructions of ab-
solute noise levels within ±1 dB of the reference. A lower frequency limit has been proposed,
based on the Rayleigh criterion, below which deconvolution fails to reconstruct the source dis-
tribution. The results indicate that the use of an extended BC extends the frequency range in
which deconvolution can successfully be applied at low frequencies.

Two common regularization terms have been investigated and the importance of a correctly
chosen regularization parameter has been reviewed. Specifically, the `1-norm regularization has
been observed to have a clear dependency on frequency and signal-to-noise ratio. Further inves-
tigations are required before a general recommendation for regularization parameter estimation
can be derived.

This study has been based on results generated by a single deconvolution algorithm using a
single data set. Using the same methodology as presented, future investigations should take into
account other algorithms and data sets to get a more general picture of boundary and regular-
ization effects on the noise quantification problem.
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A. Appendix

Reflect

5 6 5 4 5 6 5 4 5
8 9 8 7 8 9 8 7 8
5 6 5 4 5 6 5 4 5
2 3 2 1 2 3 2 1 2
5 6 5 4 5 6 5 4 5
8 9 8 7 8 9 8 7 8
5 6 5 4 5 6 5 4 5
2 3 2 1 2 3 2 1 2
5 6 5 4 5 6 5 4 5



Replicate

1 1 1 1 2 3 3 3 3
1 1 1 1 2 3 3 3 3
1 1 1 1 2 3 3 3 3
1 1 1 1 2 3 3 3 3
4 4 4 4 5 6 6 6 6
7 7 7 7 8 9 9 9 9
7 7 7 7 8 9 9 9 9
7 7 7 7 8 9 9 9 9
7 7 7 7 8 9 9 9 9



Symmetric

9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1
3 2 1 1 2 3 3 2 1
6 5 4 4 5 6 6 5 4
9 8 7 7 8 9 9 8 7
9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1



Periodic

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9


Figure 10: Common boundary conditions imposed on matrix X.
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