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Abstract

In a previous work, a unified vision of some acoustic imaging methods has been given 
within a Bayesian framework. One advantage of the so-called “Bayesian focusing” ap-
proach is that it introduces an aperture function that acts as a lens and thus significantly 
improves the reconstruction results in terms of spatial resolution, but also of quantification 
over a much larger frequency interval than allowed by conventional methods. This is par-
ticularly remarkable when the aperture function is allowed to become very narrow in the 
case of sparse sources. The aim of the present paper it to demonstrate that the aperture 
function – which was previously manually tuned by the used – can be automatically esti-
mated, together with the source distribution, in the same inverse problem. The intuition 
is to appraise an unknown aperture function from the energy distribution of a first estimate 
of the sources. This provides an updating rule of the aperture function, where the posterior 
in the current iteration is then used to refine the prior in the next iteration. The resulting 
al-gorithm is an iterated version of the Bayesian focusing approach, which can be 
formalized as an Expectation-Maximization algorithm with proved convergence. Some 
byproducts of the iterated Bayesian focusing approach – which are more painfully 
reached by other approaches – are 1) to provide a technique for the automatic setting of 
the regularization parameter, 2) to easily handle multiple snapshots, 3) to possibly apply on 
the cross-spectral matrix of the measurements, and 4) to easily allow the grouping of 
frequencies for the wideband analysis of sources that are stationary in space.

1 INTRODUCTION

The reconstruction of sound sources from acoustic array measurements is known as a difficult
inverse problem. Several methods have been proposed over the years with sustained efforts to
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reach improved performance. An unavoidable limitation arises from the fact that reconstruct-
ing a continuous acoustical field from a limited number of discrete and remote measurements,
as returned by an array of microphones, has no unique solution in general. This issue is par-
ticularly critical in near-field configurations, where the spectrum of the propagation operator
is characterized by a fast exponential decay and is therefore hardly invertible. Consequently,
sound sources cannot be reliably reconstructed unless additional information is incorporated
into the inverse problem in order to reduce the space of possible solutions. So far, Tikhonov
regularization has been the prevalent method to address this issue, by selecting solutions with
minimal energy. However, this is often at the expense of accuracy of the reconstruction, and
especially in term of spatial resolution. When the sources of interest are known to have a sparse
representation, much better strategies than Tikhonov regularization are actually feasible.

There are few reports to date of the application of sparse inversion to (near-field) acousti-
cal holography (NAH). Reference [6] was probably first to address the subject. The objective
therein is to demonstrate that a substantial reduction in the number of microphones can be
achieved (by more than a factor 10) without affecting the reconstruction performance by ex-
ploiting the sparsity of the acoustical field. The two fundamental assumptions are that the
acoustical field can be represented by a few plane waves (sparsity in the wavenumber domain)
and that the microphones are distributed randomly.

Steered by somewhat different objectives, Ref. [11] recently introduced the concept of wide-
band acoustical holography (WBH). The motivation in this work is for a method that can bridge
the gap between NAH and classical beamforming in order to reconstruct sources over a wide
frequency range. On the one hand, NAH can cover the low frequencies but requires the array to
be placed at a small distance. On the other hand, beamforming has good performance in a high
frequency range but requires the array to be moved at a larger distance. By enforcing sparsity in
the Equivalent Source Method (ESM) (i.e. representation by a few point sources), the proposed
WBH method is able to reconstruct sources with a remarkable quantification of the sound power
over a wide frequency range. A numerical experiment seems to indicate that WBH is also able to
consider extended sources such as produced by the vibration of a plate. The algorithm proposed
in Ref. [11] is named ”fast” because it uses an Iterative Hard Thresholding algorithm instead of
a direct `1-norm minimization, yet it still depends on several user-dependent parameters.

Following a similar same idea, Ref. [7] also proposed a sparse version of ESM, yet based
on direct `1-norm minimization. In accordance with the results of Ref. [6], the authors also
stress the importance of using a sampling scheme that leads to low column coherence of the
sensing matrix, a condition which is better met when the distance between the measurement
plane and the source plane is decreased. As in Ref. [11], the applicability to the reconstruction
of extended sources is also demonstrated by placing the equivalent sparse sources behind the
actual radiating surface. The investigated frequency range is limited to that of classical NAH,
where moderate improvement is observed in the reconstruction of source spatial distribution as
compared to `2 regularization. Reference [1] introduced independently a sparse wave super-
position method (with sparsity placed on the so-called ”charge points” which actually coincide
with the monopoles generating the acoustic field), yet its validation was limited to a numerical
simulation.

It is noteworthy that Ref. [17] introduced a sparse ESM before the former publications, which
was later named Iterative ESM (iESM). It was compared with Generalized Inverse Beamform-
ing in Ref. [16] and also with deconvolution approaches in Ref. [14].
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The main contribution of the present paper is to demonstrate that sparse NAH is naturally
devised by iterating the Bayesian Focusing (BF) method introduced in Ref. [2]. BF solves the
inverse acoustical problem by considering the sound sources as random variables. They are
first vaguely described by a prior probability density function (PDF) which reflects the user
expectation before the experiment is run. Next, the posterior PDF is found as the product of the
likelihood function and the prior PDF, which provides the probability of the sound sources after
taking the measurements. A typical point estimate is then returned by the maximum value of the
posterior PDF – the maximum aposteriori (MAP) – i.e. the source configuration with highest
probability of occurrence given the observed data. In BF, the variance of the prior PDF – coined
the aperture function (AF) – appears as a key quantity; intuitively, it will take high values where
the sound sources are expected to radiate from and nil values elsewhere. Therefore, by shrinking
the space of solutions to a confined region, the AF improves the quality of the reconstruction in
terms of spatial resolution and of source strength quantification over a larger frequency interval
than allowed by conventional methods. This is all the more remarkable as the AF is allowed to
become very narrow, as in the case of sparse sources. By analogy with optics, it plays the role
of a lens that focuses the light onto a point.

In Ref. [2], the AF was manually tuned by the user. A natural idea is to automate this process
by using the current estimate of the source distribution as the AF to apply in the next iteration.
It is shown in this paper that iterating BF generally leads to the recovery of sparse solutions.
Not only is the common `1-norm penalty recovered as a particular case, but many other sparsity
enforcements – possibly stronger than the `1-norm – can be devised depending on how the AF
is updated. The reason is that when the AF is considered as a random quantity (in the Bayesian
setting all unknowns are described by random variables), it then assigns the sound sources with
a prior PDF in the form of a ”scale mixture of Gaussians” (SMoG), which necessarily promotes
sparsity. Based on this finding, the convergence of the iterations can be proved by establishing
a formal equivalence with the Expectation-Maximization algorithm. This algorithm will be
referred as Iterating Bayesian Focusing (IBF).

One advantage of IBF is to provide some physical insight into the mechanism of sparsity
enforcement. Through the role played by the AF, it explains why promoting sparse solutions
not only increases the spatial resolution, but also improves the estimation of the source levels
and the source directivity over a larger frequency range than allowed by conventional methods.

Another prime advantage of the approach is to inherit the automated regularization of BF
[18]. Contrary to Tikhonov regularization for which well established algorithms exist (e.g. the
L-curve, GCV), this point remains an issue in compressive beamforming. Here, by taking a
Bayesian perspective, the regularization parameter is jointly inferred in IBF with proved con-
vergence.

The Bayesian framework also easily allows the processing of multiple snapshots and multiple
frequencies, which both involve the consideration of group sparsity [12]. The multi-snapshot
case is addressed here by means of the cross-spectral matrix (CSM), which turns out a sufficient
statistics while, at the same time, often being the only quantity returned by commercial data ac-
quisition systems (the approach differs in this aspect from that of Ref. [9]). The multi-frequency
case is of interest when the sound sources have a constant position in space, independently of
their frequency content, thus leading to broadband processing. Both the multi-snapshot and the
multi-frequency considerations are shown to improve the estimation of the sound sources.
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2 Bayesian Focusing

The array is composed of M microphones indexed by the lower-case letter m, located at posi-
tions rm, m = 1, ...,M. All measurements are considered at a given frequency f , after appli-
cation of the Fourier transform on a series of N snapshots indexed by the lower-case letter i
(i = 1, ...,N). The Fourier coefficients of the sound pressure measured by microphone m and
assigned to snapshot i then reads pm,i, where explicit dependence on frequency f is dropped to
simplify the notation. The M Fourier coefficients pm,i, m = 1, ...,M are collected in the column
vector pi. The cross-spectral matrix (CSM) of the measurements averaged over N snapshots is
defined as

Spp =
1
N

N

∑
i=1

pipH
i . (1)

In the following, formulations in either continuous or discrete space will be used alternatively,
the former because it provides deeper physical insight and the latter because it corresponds to
the numerical resolution of the problem. In the continuous formulation, the source distribution
is assumed to be a scalar field – e.g. parietal pressure, normal velocity – that adheres on the
source surface Γs. In a functional notation, it is noted si(r) where r ∈ Γs stands for the position
vector. In the discrete formulation of the problem, the spatial samples of the source distribution
taken at positions rq, q = 1, ...,Q are noted sq,i

.
= si(rq). They are referred to as the “source

coefficients” and are collected in the column vector si, with dimension Q. The power spectrum
of the source coefficients at position rq, averaged over N snapshots, is defined as

S2
q =

1
N

N

∑
i=1
|sq,i|2. (2)

The matricial relationship between the source distribution and the radiated pressures mea-
sured by the microphones reads, after discretization form,

pi = Gsi +ni, i = 1, ...,N, (3)

where G stands for an M×Q matrix whose entry (i,q) is fed with G(rm|rq)∆Γ(rq) – with
∆Γ(rq) a small surface element at position rq – and where vector ni stacks the noise terms nm,i.

The aim of the inverse problem is to recover an estimate of the source distribution si(r) from
the observation of the measured pressures P .

= {pi}N
i=1 returned by the array of microphone.

BF provides a solution to this problem that makes intensive use of prior information about the
spatial structure of the source field to be recovered.

The philosophy in the Bayesian approach is to see all unknowns in the inverse problem as
random variables and to infer them through their PDFs. Of interest here is the posterior PDF
[si|pi] of the vector si of coefficients coefficients given the measurement pi. The knowledge
of [si|pi] completely characterizes the information that can be gained on si once the data have
been measured. A popular point estimate used in this paper is the maximum aposteriori (MAP)
estimate,

ŝi = Argmax
si

[si|pi], (4)
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to be interpreted as the value of si with maximum probability, yet another plausible estimate is
the posterior mean E{si|pi}=

∫
sid[si|pi].

Bayes’s rule then makes it possible to express the “inverse probability” [si|pi] in terms of the
probabilities assigned to the direct problem, that is

[si|pi] =
[pi|si][si]

[pi]
(5)

where [pi|si] is the PDF of observing the data given an instance of si (the so-called likelihood
function), [si] is the PDF of the values possibly taken by si before the data are observed (the
so-called prior) and [pi] =

∫
[pi|si]d[si] is the “evidence”. The Bayesian program is to introduce

the PDFs [pi|si] and [si] according to the specificity of the problem and to deduce the posterior
PDF [si|pi] by using Eq. (5).

Since the data are processed in the Fourier domain, it holds from the Central Limit Theorem
applied to the Fourier transform that the elements of the noise vector ni rapidly converge to
a complex Gaussian [4]. Assuming for simplicity a zero mean and a covariance matrix pro-
portional to the identity (this assumption reflects a homogeneous field; it is without loss of
generality since the data can always be centered and standardized beforehand),

[pi|si] =
e−β−2(pi−Gsi)

H(pi−Gsi)

β 2MπM = NC(pi;0,β 2I) (6)

where β 2 stands for the value of the noise power spectrum at frequency f (independently of
space according to the previous assumption).

The specification of the prior PDF [si] allows much more flexibility and is actually central
in this paper. The assumption initially used in Ref. [2] is to resort to a complex Gaussian,
mainly because it makes analytic calculation tractable and also because it coincides with clas-
sical Tikhonov regularization. Namely,

[si] =
e−α−2sH

i Σ
−2
0 si

α2KπK|Σ2
0|

= NC(si;0,α2
Σ

2
0) (7)

where α2Σ2
0 = E{sH

i si} stands for the prior covariance matrix of the coefficients, α2 for their
mean power and Σ2

0 an unscaled matrix of correlation coefficients conventionally normalized
such that trace{Σ2

0}= K. The fact that α2Σ2
0 does not depend on index i reflects the assumption

of a stationary acoustic field, i.e. with constant statistical properties during the acquisition of the
N snapshots. Using Eq. (5), one then finds the posterior PDF in the form of a complex Gaus-
sian, whose posterior mean ŝi coincides with the MAP estimate as well as with the Tikhonov
regularized least-square solution (LS) returned by

ŝi = Argmax
si

[pi|si][si] = Argmin
si

(
||pi−Gsi||22 +η

2‖Σ−1
0 si‖2

2
)

(8)

with ‖Σ−1
0 si‖2

2
.
= sH

i Σ
−2
0 si, η2 = β 2

α2 and wherein all terms not depending on si have been dropped
out. The ratio η2 = β 2/α2 in the above equations acts as the Tikhonov regularization parameter
which controls the stability of the solution. One benefit of the Bayesian framework is to provide
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a solution to automatically tune η2, as described in Ref. [19].
In the context of this paper, the sources coefficients are assumed to be sparsely distributed

in space; this means that only a very elements in vector si (always the same independently of
snapshot i) are expected to have significant values, the other ones being close (or ideally equal)
to zero. One way to enforce this property is to assign to si a prior PDF with heavy tails and very
peaked at zero as compared to the Gaussian, which is denoted hereafter as leptokurtic (i.e. with
a kurtosis greater than the Gaussian). The use of leptokurtic prior PDFs (sometimes referred
to as sparse priors, sparsity enforcing priors or shrinkage prior) within the Bayesian framework
for enforcing sparse solutions has been extensively studied in the recent statistical literature (see
e.g. [3, 13]).

A physical interpretation is given hereafter in terms of SMoGs. Let the source coefficients
have the following probabilistic model

sq,i = α ·σ0,q · τq · εq,i, εq,i ∼NC(0,1), (9)

where the source power α2 and the AF σ2
0,q are as previously defined, εi,q denotes a standard-

ized (i.e. zero-mean and unit variance) complex Gaussian random variable, and τq is now an
additional non-negative random variable which reflects the ”relative intensity” at the spatial po-
sition rq (see Fig. 1) (if τq was deterministic, then model (9) would be equivalent to having si
distributed as in Eq. (7)). It is noted at this juncture that α cannot be absorbed into τq because
it acts as a scaling factor, whereas the latter will be shortly seen to act as a ”sparifying” variable
whose scale must be left free – α has the same unit as the source whereas τq is dimensionless.
As compared to the uniform relative intensity used BF, the resulting spatial distribution of the
source coefficients is thus sparser.

2 2 2

0,q q   

2

q
updated aperture 

function

source power relative intensity

initial aperture 

function

Figure 1: Structure of the sparse spatial prior, where index q relates to spatial position rq. α2

is the global source power and the initial aperture function σ2
0,q reflects its expected

spatial distribution before the experiment is run. The spatial variance α2σ2
0,q is used

in the Gaussian prior PDF of BF; its multiplication by the relative intensity τ2
q returns

the spatial variance α2σ2
0,qτ2

q used in the SMoG prior PDF of Iterated Bayesian Fo-
cusing. The method updates the aperture function as σ2

q ← σ2
0,qτ2

q .

Although it is difficult to specify the values of τ2
q before the inverse problem is solved, it is
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possible to assign them a hyperprior PDF,
[
τ2

q
]
, that allows local variations in space. Given a

spatial position rq and considering all snapshots i = 1, ...,N observed at this position, the prior
PDF of the source coefficients S .

= {sq,i}N
i=1 then reads

[S] =
∫

∞

0

N

∏
i=1

[
sq,i|τ2

q
]

d
[
τ

2
q
]
= E

τ2
q

{
N

∏
i=1

[
sq,i|τ2

q
]}

= E
τ2

q

{
N

∏
i=1

NC
(
sq,i;0,α2

σ
2
0,qτ

2
q
)}

(10)

where Eτ2
q

means that the expected value is taken with respect to the random variable τ2
q . In-

spection of Eq. (10) shows that the prior PDF of the source coefficients is a continuous mixture
of Gaussians NC

(
sq,i;0,α2σ2

0,qτ2
q

)
weighted by the ”scale”

[
τ2

q
]

– the so-called SMoG. This
is in general no longer a Gaussian, but a leptokurtic PDF.

Different prior PDFs are obtained depending on the choice of the hyperprior
[
τ2

q
]
. Only two

are investigated here. They are expressed in terms of a sufficient statistics, the normalized sum
of squares

χ
2
q = N

S2
q

α2σ2
0,q

(11)

which involves the ratio of the source power spectrum S2
q (see Eq. (2)) to the prior spatial

variance α2σ2
0,q at the same position.

• Multivariate complex Student-t (MCS). Let us assume that τ2 is distributed like an
inverse Gamma, with shape and rate parameters a > 0 and b > 0, respectively:

[
τ

2]= ba

Γ(a)
e−bτ−2

τ2(a+1)
. (12)

It then holds that [
χ

2
q
]
=

Γ(N +a)ba

(πα2σ2
0,q)

NΓ(a)
(
χ2

q +b
)(N+a)

, (13)

which is recognized as a multivariate complex version of the Student-t distribution. This
PDF can be made very leptokurtic by setting the value of a small. By substituting the
MCS for the prior PDF into the MAP, one arrives at an LS formulation with a logarithmic
penalty, viz

ŝi = Argmax
si

[P|S][S] = Argmin
si

(− ln[pi|si][S])

= Argmin
si

(
||pi−Gsi||22 +β

2(N +a) ln

(
α
−2

N

∑
j=1

sH
j Σ
−2
0 s j +b

))
. (14)

Note that the logarithmic penalty is here naturally endowed with a regularization term
b > 0 that prevents it from diverging.

• Generalized multivariate complex Gaussian (GMCG). The multivariate complex ver-
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sion of a generalized Gaussian PDF reads

[
χ

2
q
]
=

p/2
(πα2σ2

0,q)
N

Γ(N)

Γ(2N/p)
e−(χ2

q)
p
2
, 0 < p≤ 2. (15)

Since the generalized Gaussian (also known as the exponential power distribution in the
statistical literature) is an SMoG, the GMCG is also an SMoG (actually for p ≤ 2). The
expression of

[
τ2] happens to be quite intricate, yet only the expression of the marginal

PDF (15) will be needed in the following. Formula (15) extends the result of Ref. [15] to
the multivariate case.
Sparsity is enforced by setting small values of p, strictly smaller than 2 and typically
smaller than or equal to 1. As special cases, p= 2 corresponds to the multivariate complex
Gaussian (`2-norm penalization) and p = 1 to the `1-norm penalization.
The GMCG prior gives rise to the penalized LS problem,

ŝi = Argmin
si

||pi−Gsi||22 +
β 2

α p

(
N

∑
j=1

sH
j Σ
−2
0 s j

) p
2
 , (16)

where the penalty function mixes the `2 and the `p norms.

3 The Iterated Bayesian Focusing algorithm

An algorithm is proposed hereafter to reach the MAP, described in terms of the normalized sum
of squares

χ
2
q,[k−1] = N

S2
q,[k−1]

α2
[k−1]σ

2
0,q,[k−1]

(17)

which involves the power spectrum S2
q,[k−1] =

1
N ∑

N
i=1 |ŝq,i,[k−1]|2 of the source coefficients esti-

mated at iteration k−1.

Algorithm 1

• Step 0: Design an initial AF σ2
0,q and construct the diagonal matrix Σ2

0 whose q-th diago-
nal entry is σ2

0,q.

• Step 1: Set k = 0. Estimate the source power α2
[0] and the regularization parameter η2

[0]
with the method of ref. ([19]). Initialize the algorithm with the MAP solution returned
from a Gaussian prior.

• Step 2: Do k←− k+1.
Estimate the relative intensity as

τ̂
2
q,[k] =−

(
∂

∂ χ2
q,[k−1]

ln
([

χ
2
q,[k−1]

]))−1

, (18)
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where [χ2
q,[k−1]] is the prior PDF expressed as a function of the normalized sum of squares

χ2
q,[k−1] at iteration k−1.

• Step 3: Update the AF as
σ

2
q,[k] = σ

2
q,0τ̂

2
q,[k] (19)

and construct the diagonal matrix Σ2
[k] whose q-th diagonal entry is σ2

q,[k].

• Step 4: Estimate the source power and the regularization parameter as ([19])(
α

2
[k],η

2
[k]

)
= Argmax

[
α

2,η2|Spp,Σ
2
[k]

]
(20)

• Step 5: Estimate the power spectrum of the the source coefficients at position rq as

S2
q,[k−1] = σ

4
q,[k]g

∗
q(GΣ

2
[k]G

H +η
2
[k]I)

−1Spp(GΣ
2
[k]G

H +η
2
[k]I)

−1gq (21)

where gq is the q-th column of matrix G.

Stop iterations when ||ŝi,[k] − ŝi,[k−1]||/||ŝi,[k−1]|| is smaller than a given threshold,
0 < ε2 < 1.

IBF belongs to the family Iterative Re-weighted Least Squares (IRLS) algorithms [10], since
at each iteration it solves a weighted least square problem whose solution is given by Eq. (21)
with Σ2

0 replaced by it updated version Σ2
[k] as obtained from Eq. (19). Yet, it is more rigor-

ously derived as an Expected-Maximization (EM) algorithm, which makes possible to prove its
convergence to the MAP solution – insightful connections between IRLS and EM have been
investigated in Ref. [5].

The regularization parameter η2 is iteratively updated together with the source coefficients
with proved convergence. This is to be contrasted with other approaches found in the literature
where the regularization parameter is either arbitrarily imposed or tuned afterwards, typically
by using cross-validation or the L-curve. The latter approaches require running the optimization
as many times as values of the regularization parameter are to be tested, and are therefore com-
putationally more demanding – if not prohibitive in some applications such as that illustrated
in subsection 4. In addition, the estimation of the regularization parameter by means of the
Bayesian criterion used in Step 4 has been found more efficient than the cross-validation or the
L-curve in many inverse acoustic scenarios [19].

A key step in the IBF algorithm is the update of the AF in Eq. (19) rooted on the current
estimate of the relative intensity τ̂2

q,[k] given by Eq. (18).

• Multivariate complex Student-t (MCS). The expected relative intensity related to the
MCS prior PDF is easily found by application of Eq. (18) to Eq. (13):

τ̂
2
q,[k] =

χ2
q,[k−1]+b

N +a
. (22)

9
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• Generalized multivariate complex Gaussian (GMCG). The expected relative intensity
related to the GMCG is readily found as

τ̂
2
q,[k] =

2
p

(
χ

2
q,[k−1]

)1− p
2
, 0 < p≤ 2. (23)

This is again a monotonic power function of χ2
q,[k−1], where high sparsity can be reached

by setting p small.

The updating rule of the GMCG is particularly intuitive since it reads, in logarithmic scale,

lnσ
2
q,[k] = ln

(
σ

2
q,0
)
+ ln

(
τ̂

2
q,[k]

)
=

p
2

ln
(
σ

2
q,0
)
+
(

1− p
2

)
ln
(

S2
q,[k−1]

)
+C (24)

with C a global scaling that does not depend on the local position rq. Therefore, the updating
is interpreted as the weighted geometric mean between the initial AF σ2

q,0 and the previous
estimation of the source power spectrum S2

q,[k−1]. The value of p specifies the balance between
the two terms. For p = 1, uniform weights of value 1/2 are assigned to the two terms, whereas
for 0 < p < 1, more weight is given to the data-dependent term.

Experimental comparison of the above priors is carried on in a numerical simulation. The
range distance is R = 0.5 m and an ULA with 20 microphones and spacing 0.1 m is used.
The SNR is set to 20 dB and the number N of snapshots to 100. The source domain Γs =
{r :−1≤ r ≤ 1} (in meters) is discretized with a spatial step of 0.01 m. Initialization of the
IBF algorithm is done by using a Hann window for the AF.

The first experiment investigates the reconstruction of two incoherent monopoles with 14 dB
difference in power level, located at r1 = −0.05 m and r2 = 0.1 m, at the very low frequency
f = 100 Hz. It is seen that both beamforming and BF fail to detect the smallest source due to a
poor spatial resolution (see Fig. 3). Although the MMCG with p= 1 (i.e. `1-norm penalization)
can correctly identify the two sources, better results are achieved by the sparser priors MMCG
with p = 0 and the MCS (note a small bias on the localization of the small source). The second
experiment investigates another extreme case with a very high frequency f = 10 kHz and the
same two unequal source strengths. Beamforming and BF both fail in this case (see Fig. 3).
The MMCG prior with p = 1 clearly improves the situation, yet GMCG (p = 0) and MCS still
return the best estimates with the deepest dynamic range achieved by the latter.

4 Broadband Bayesian Focusing (BBF)

So far, a different AF has been assumed at each frequency f . Nevertheless, it is meaningful to
consider instances where the AF is independent of frequency, as would typically occur when
the sound source is attached to a specific device (e.g. an obstruction, an opening, etc.). This
situation has been considered for example in acoustic imaging in Refs. [8, 20] and is reminiscent
of the concept of “multi-frequency” group sparsity, where the same sparse structure is enforced
to the source distribution for a group of frequencies.
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Figure 2: Estimated source power spectrum S2
q at at f = 100 Hz with N = 100 snapshots in

the case of two incoherent monopoles with 14 dB difference in levels. The positions
of the microphones is marked by black circles in (a). a) Results returned by conven-
tional beamforming (blue) and Bayesian Focusing (red). Results returned by Iterated
Bayesian Focusing with b) an GMCG prior with p = 1, c) an GMCG prior with p = 0
and d) an MCS prior (a = b = 0.01). The red curves in (b-d) relate to the source
power spectrum S2

q and the black curves to the updated aperture function σ2
q .

Forcing a constant AF in a frequency band is straightforward within the proposed IBF
framework. It is also found to yield improved results. The algorithm proceeds as follows.

Algorithm 3

• Define a frequency band B = { f1, ..., fB} as a collection of frequency bins (as typically
returned by the discrete Fourier transform) where the self-tunning AF is invariant.

• Apply Algorithm 1 where

– steps 0 and 3 are unchanged,

– step 2 is modified with

χ2
q,i,[k−1] =

∑
B
k=1 |ŝq,i,[k−1]( fk)|2

α2
[k−1]σ

2
0,q,[k−1]

(25)
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Figure 3: Same configuration as in Fig. 3 at f = 10 kHz.

substituted for χ2
q,[k−1], where ŝq,i,[k−1]( fk) stands for the evaluation of ŝq,i,[k−1] at

frequency fk and snapshot i,

– steps 1, 4 and 5 are unchanged but performed for each frequency fk in band B.

Equation (25) is the main modification to address the broadband case. The quantity χ2
q,i,[k−1]

may be interpreted as the normalized energy of the source coefficients – as measured by their
power spectra – summed in band B. A resolution in terms of the CSM is also trivially imple-
mented by considering the quantity ∑

N
i=1 χ2

q,i,[k−1]/N averaged over N snapshots in Eq. (25)
and proceeding as in Algorithm 2. Eventually, it is noteworthy that a different regularization
parameter is reasonably assumed at each frequency.

BBF is illustrated here for the reconstruction of four uncorrelated monopole sources driven by
white noises in a wide frequency interval B ranging from 100 Hz to 20 kHz. The sources are lo-
cated at r1 =−0.1, r2 = 0, r3 = 0.1 and r4 = 0.2 m on the source domain Γs = {r :−1≤ r ≤ 1}
(in meters) and have decreasing levels in the proportion 1, 0.25, 0.04 and 0.01 (i.e. 0dB, -6dB,
-14dB, -20dB). The array is the same as in Example 3 and the range distance is R = 0.1 m. The
SNR is set to 20 dB. BBF is run with the CSM computed on 100 snapshots and a spatial reso-
lution of 10 Hz is used (thus leading to B = 1991 frequency bins). The results of conventional
beamforming, BF, IBF and BBF are compared in Fig. 5. It is again checked that beamforming
and BF both suffer from 1) a poor spatial resolution which makes the localization of the sources
difficult below 2 kHz and 2) a limited dynamic range which prevents the two smallest sources
from being identified. On the one hand, whereas IBF greatly upgrades the results, it is limited
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downward to 1 kHz for the reconstruction of the strongest source and to 2 kHz for the smallest
source. The identification of the two small sources is actually intermittent and the smallest one
is missed at most frequencies. On the other hand, BBF completely fixes these errors. The accu-
racy in terms of localization and quantification is excellent over the full frequency range and for
all sources. This is because a frequency-independent AF is better estimated from an “average”
of the map in Fig. 5(c), which in turns improves the estimation of the sources at low frequencies
and low SNRs.

Concerning computational time, the BBF algorithm was actually found faster than repeating
the IBF for all frequencies in the scrutinized band. As previoulsy explained, this is because ac-
counting for all frequencies at once makes the convergence of the iterations faster (convergence
was achieved after 7 iterations for BBF while each run of the IBF required about twice as many
iterations on the average).
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Figure 4: Estimated source distribution on the 1D domain Γs = {r : −0.2 ≤ r ≤ 0.3}, as a
function of frequency, when the theoretical distribution comprises four monopoles
placed at r = 0.2 m, r = 0.1 m, r = 0 m and r =−0.1 m, driven by uncorrelated white
Gaussian signals with levels in the proportion 1, 0.25, 0.04 and 0.01, respectively, and
SNR of 20 dB. Estimates returned by a) BF with a fixed uniform aperture function, b)
conventional beamforming, c) IBF with an MCS prior, and d) broadband IBF with an
MCS prior.

13



7th Berlin Beamforming Conference 2018 Antoni, Lemagueresse and Leclère

5 CONCLUSIONS

This paper has demonstrated how sparse acoustical holography is naturally achieved by simply
iterating the Bayesian Focusing method previously proposed in Ref. [2]. The principle consists
in using the estimated sources in the current iteration to update the aperture function in the
next iteration. Formally, this is equivalent to considering the aperture function as a random
quantity (endowed with a prior probability density function) that is estimated conjointly with
the sources. Not only does this point of view provide physical insight into the mechanism of
sparse acoustical holography – and in particular why it can considerably improve the estimation
of source quantification and directivity high in frequency – but it also allows direct extension to
different scenarios. For instance, the method is easily formulated in terms of the cross-spectral
matrix and adapted to the broadband case (i.e. frequency group sparsity) where source positions
are assumed stationary in space. The method also allows complete flexibility in the choice of
the sparsity penalty. The multivariate complex Student−t prior appears to be a good candidate,
which returns sparser results than the typical `1-norm approach while at the time offering stable
results. A last but not least advantage is that Iterated Bayesian Focusing inherits the possibility
of automatic setting of the regularization parameter, an issue which has remained critical in
sparse methods.

Overall, it is believed that Iterated Bayesian Focusing provides a comprehensive view of
sparse acoustical holography that might not be shared by other approaches.
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sive beamforming.” The Journal of the Acoustical Society of America, 138(4), 2003–2014,
2015.

[10] I. F. Gorodnitsky and B. D. Rao. “Sparse signal reconstruction from limited data using
FOCUSS: A re-weighted minimum norm algorithm.” IEEE Transactions on Signal Pro-
cessing, 45(3), 600–616, 1997. ISSN 1053587X.

[11] J. Hald. “Fast wideband acoustical holography.” The Journal of the Acoustical Society of
America, 139(4), 1508–1517, 2016.

[12] J. Huang and T. Zhang. “The benefit of group sparsity.” Ann. Statist., 38(4), 1978–2004,
2010. doi:10.1214/09-AOS778.

[13] S. Ji, Y. Xue, and L. Carin. “Bayesian compressive sensing.” IEEE Transactions on Signal
Processing, 56(6), 2346–2356, 2008. ISSN 1053-587X.

[14] Q. Leclère, A. Pereira, C. Bailly, J. Antoni, and C. Picard. “A unified formalism for
acoustic imaging based on microphone array measurements.” International Journal of
Aeroacoustics, 16(4-5), 431–456, 2017.

[15] M. Novey, T. Adali, and A. Roy. “A complex generalized gaussian distribution – charac-
terization, generation, and estimation.” IEEE Transactions on Signal Processing, 58(3),
1427–1433, 2010. ISSN 1053-587X.

[16] B. Oudompheng, A. Pereira, C. Picard, and B. Nicolas. “A theoretical and experimental
comparison of the iterative equivalent source method and the generalized inverse beam-
forming.” Proceedings of the 5th Berlin Beamforming Conference, pages 1–15, 2014.

[17] A. Pereira. “Acoustic imaging in closed spaces.” Ph.D. thesis, University of Lyon, 2013.

[18] A. Pereira, J. Antoni, and Q. Leclère. “Empirical bayesian regularization of the inverse
acoustic problem.” Applied Acoustics, 97(Supplement C), 11 – 29, 2015. ISSN 0003-
682X.
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