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Abstract

The problem of identifying and localizing noise sources using microphone arrays led to
a vast literature and numerous imaging algorithms in the field of vibroacoustics. However,
the radiated acoustic power estimation of extended vibroacoustic sources is still challeng-
ing, due to the complex directivity and radiation patterns associated with such structures.
The iterative algorithms and inverse formulations used in the last decade to estimate the
radiated power from extended structures, typically result in large computational burden.
The imaging algorithm presented herein aims at identifying the relative phase between in-
dividual monopoles on the whole imaging domain to help achieve better resolution in the
identification of the boundaries of extended vibroacoustic sources. This highly paralleliz-
able algorithm improves standard beamforming algorithms by using phase coherence filters
and allows the identification of operational deflection shape of extended structures and bet-
ter estimation of radiated acoustic power.

1 INTRODUCTION

1.1 Acoustic Imaging of extended sources

The problem of identifying multiple acoustic sources using imaging algorithms has been ad-
dressed by many authors in the past decades. However, identifying the boundaries of extended
vibroacoustic sources in near field, their associated velocity field, and thus, the radiated acoustic
power still challenges researchers [1]. Other approaches can be used to measure the radiated
acoustic power of vibrating structures. Indeed, Near-Field Acoustic Holography (NAH) is an
established method to characterize vibroacoustic sources, but the need to position a highly dis-
cretized microphone array very close to the structure of interest can be limitative [2]. Other
non-contact approaches such as Laser Doppler Vibrometry and the use of p-u probes offer good
precision, but are not suited for real time identification of transient phenomena or require precise
calibration in controlled environments [3].
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Consequently, acoustic imaging algorithms oriented toward the characterization of extended
acoustic sources in the near-field have been presented in the litterature. However, the proposed
algorithms are generally characterized by high complexity. Indeed they result in multidimen-
sional optimization problems via the introduction of generalized steering vector or the use of
multiple Green’s functions [4, 5]. In order to avoid the need to introduce new source parameters
such as shape or extend, a developed concept in ultrasound imaging, namely Phase Coherence
(PC) could be adapted to the imaging of acoustic sources [6]. The origin of PC, its recent
adaptation to the ultrasound domain and its potential in the audible domain are presented in
Subsection 1.2.

1.2 Phase coherence

To help identifying low contrast sharp features in optics and image processing, various PC
statistics can be used [7, 8]. Indeed, the importance of signal phase in the Fourier domain is a
well known concept in optics and image processing [9]. Recently, the fact that phase carries the
majority of a signal information was introduced in active ultrasound imaging through the use
of PC filters for time-domain signals. It was shown that using PC filters in active ultrasound
imaging, the number of insonifications and transducers can be reduced, resulting in shorter
image computation time. The most efficient PC filters are metrics that quantify the similitude
of the measured phase amongst the different receivers (transducers in ultrasound imaging). In
other words, the images obtained using Beamforming (BF) principles are ponderated by spatial
filters whose values are normalized by 1, depending on the strength of the phase coherence
at each pixel. For instance, the Sign Coherence Factor (SCF) and the Circular Coherence
Factor (CCF) are the most efficient PC filters to date [10]. Since PC statistics are known to
increase sensitivity to edge detection (image processing) and to acoustic impedance variations
(ultrasound imaging), one would be tempted to see if PC can help identifying the boundaries of
noise sources in the audible domain.

Hence, based on the above PC filters, this article proposes an iterative PC algorithm for the
passive imaging of stationary vibroacoustic sources in the frequency domain. As presented in
the following, the use of PC amongst the different microphones of an array can help identifying
the boundaries of extended acoustic sources. Following this identification process, an accurate
estimation of the radiated acoustic power can be obtained.

2 Methodology

2.1 Array measurement and definitions

In the frequency domain, acoustic source identification can be performed using a set of acoustic
pressure measurements. Given an active noise source, the acoustic pressure radiated at a given
point in space can be expressed as a linear relationship from the normal velocity of this source.
The analytical formulation of this principle is known as the Rayleigh integral. By discretizing
the source domain in N source elements and assuming a constant velocity vs over each element
of a baffled planar vibrating structure, as presented in Figure 1, the Rayleigh integral can be
expressed as the superposition of these N elements (given that the elements are smaller than the
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acoustic and structural wavelengths):

pm = p(xm,ym) =
jωρ0

2π

N

∑
s=1

vs
e− jkRms

Rms
Ae (1)

where pm is the pressure measured by a microphone positioned at the cartesian coordinate
(xm,ym,zm), vs is the normal complex velocity of the source element s of area Ae centered
at (xs,ys,zs), Rms is the distance given by

√
(xm− xs)2 +(ym− ys)+(zm− zs)2, k is the

wavenumber, ω is the angular frequency and ρ0 the density of the medium [11]:

x

y

z

vs =vn(xs,ys)

pm = p(xm,ym)

Source plane

Figure 1: Acoustic pressure measured by an array of microphones positioned above an extended
source represented by N source elements (monopoles)

Defining Gms =
e− jkRms

Rms
and separating the magnitude and phase of the complex velocity

vs = |vs|e jφs , Eqn. 1 can be rewritten as the following system of linear equations:

P =
jωρ0Ae

2π


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G21 G22
...

... . . .
GM1 ... GMN


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
e jφ1 0 ... 0

0 e jφ2
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... . . .
0 ... e jφN



|v1|
|v2|

...
|vN |


︸ ︷︷ ︸
|v|

(2)

=
jωρ0Ae

2π
[G]diag(e jφ1,e jφ2, ...,e jφN )|v| (3)

where [G] is the M × N Green’s matrix (M being the number of microphones),
diag(e jφ1,e jφ2 , ...,e jφN ) is the N×N diagonal matrix containing the phase information of the
source elements and |v| is the N× 1 magnitude vector of the source elements normal veloc-
ity. The imaging algorithm proposed in the following section aims at first identifying the phase
of every source element (or monopole) using beamforming principles, and then, reducing the
imaging domain using a PC filter.
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2.2 Iterative Phase Coherence Algorithm (iPCA)

Since most of the information of measured sound pressures is contained in the phase, a first
identification of source velocity phase assuming an arbitrary source velocity magnitude should
lead to a good first source identification [8]. Hence, using Beamforming (BF) priciples, the
phase φm,s of each source element s can be evaluated by each microphone m under the assump-
tion that only source element s contributes to the sound pressure at microphone m:

φm,s = arg(− jG∗ms pm) (4)

where the real multiplicative factors from Eqn. 3 are neglected since only the argument is
needed. For instance, the phasor (e jφm,s) evaluated by each microphone (m) for a given source
pixel (s) is represented by a blue dot in Figure 2. The red arrow represents the phasor averaged
over the microphone array in the case where the source pixel corresponds to an active source
(Figure 2(a)) and when the source pixel corresponds to point of null velocity (Figure 2(b)).

(a) (b)

Figure 2: Phasor (blue dot) evaluated by each microphone for a given source pixel and the
average (red arrow) of the M phasors. (a) Phasor identification of a source pixel
that coincides with an active source (φ = π) and (b) of a source pixel that does not
coincide with any source.

Hence, the absolute phase of a given source pixel can be obtained by taking the argument
of the phasor represented by the red arrow in Figure 2. It is clear that when an active source
element coincides with the source pixel, the magnitude of the resulting mean phasor is greater
than when no source is present. To help visualizing the phase coherence, the phases from
Figure 2 can be represented in the form of an histogram, as presented in Figure 3.

In Figure 3, the maximum of the histogram for the wider strips shows that a strong phase
coherence is obtained for the source pixel that coincides with the active source (φ ≈ π), whereas
no clear phase coherence is measured for the other source pixel. Using this representation, the
instantaneous phase of each source pixel can be estimated using the maximum of its associated
histogram. Consequently, the magnitude of the average phasor presented in Figure 2 or the
maximum of the histograms from Figure 3 can both be used to represent Phase Coherence (PC)
between the different microphones for a given source pixel.

The PC is a useful tool to quantify the probability of source presence for a given pixel.
Consequently, a threshold on the PC can be introduced to reject the source pixels associated
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L

Figure 3: Source phase histogram as a function of number of microphones L in the array for
a source pixel coinciding with an active source (wide strips) and with a zero source
velocity (narrow strips)

to low source presence probability, resulting in a reduced imaging domain. Given the absolute
phases (Eqn. 4) on this reduced imaging domain, the normal velocities can be calculated by
substituting the obtained phases in Eqn. 3. Extracting the velocity field from Eqn. 3 using
the Moore-Penrose pseudo inverse (·†) of the Green’s matrix [G], the following expression is
obtained:

|v|= 2π

jωρ0Ae
diag(e− jφ1, ...,e− jφN )[G]†P (5)

However, it is known that the poor conditionning of [G] is translated in an extreme sensitivity
to noise. One solution to improve the conditionning of [G] is to solve Eqn. 5 using the Singular
Value Decomposition (SVD) of [G]. Using the SVD, the singular values associated to noise
can be separated from the signal singular values, and even suppressed [12, 13]. This noise
singular value rejection process is crucial to obtain a better conditionned [G] matrix, and thus,
to obtain a correct evaluation of v. However, the source velocity obtained using this technique
can be further improved. Indeed, using an iterative process, the strength and usefulness of PC
filtering is better put forward.

Instead of making the strong assumption of a unique active monopole source during the phase
identification (as done in Eqn. 4), the whole domain (source plane) is considered using the
superposition principle. Indeed, from an initial estimation of the velocity phase and magnitude
for each source element, subsequent estimations of these quantities can be iteratively calculated
with the consideration of superposition of all the source elements. Consequently, the phase of
a given source pixel at iteration i can be evaluated from Eqn. 3 using the velocity phase and
magnitude at all other source pixels from the previous iteration (i−1) :

φ
i
m,s = arg

(
pm

j f ρ0Ae
− ∑

s′ 6=s
Gms′ · exp

(
jφ i−1

s′
)
|vi−1

s |

)
(6)

where the velocity magnitude |vi−1
s | is calculated as in Eqn. 5 over the conserved pixels. At each

iteration, the PC is recalculated and the imaging domain is modified based on the PC threshold.
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To illustrate the rejection process, the number of pixels kept at different iterations is represented
at Figure 4 for a given source configuration using a threshold of 10% on the phase coherence.
The iteration process is repeated until convergence is obtained. The convergence criterion is
defined by the convergence of the radiated power calculated by the method presented in the
following section (section 2.3).

Original domain

Iteration #1

Iteration #15

Figure 4: Evolution of the imaging domain at different iterations for the reconstruction of the
complex normal velocity field (the white regions represent rejected pixels).

2.3 Radiated sound power

For a given vibrating structure of area S, the radiated acoustic power at a given angular fre-
quency ω can be calculated by summing the contribution of each surface element of area (As)
and is given by:

P =
S

2N
ℜ
{

vHp
}

(7)

where v contains the normal velocity of each source element (column vector), p is the surface
pressure acting on each source element (column vector) and the operator (·)H is the conjugate
transpose. As derived in [14], Eqn. 7 can be calculated using the radiation resistance matrix [R]
and is given by:

P(ω) = vH [R]v (8)

with [R] defined as:

R =
ω2ρ0A2

e
4πc


1 sin(kR12)

kR12
... sin(kR1N)

kR1N
sin(kR21)

kR21
1

...
... . . .

sin(kRN1)
kRN1

... 1

 (9)

where Ri j is the Euclidean distance between the source elements i and j The following section
presents the numerical configurations considered to test the algorithm.
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3 Results and discussion

3.1 Pistons

The first numerical configuration considered to test the algorithm is presented in Figure 5. Two
square pistons of 0.3 m×0.3 m, of identical amplitude (0.01 m), with a phase difference of π/3
are mounted on an infinite baffle and are included in the imaging domain (plane) considered.

z

x

y

f = p/3

f = 2p/3

baffle

Figure 5: Stationnary sources for the numerical results : two pistons on an infinite baffle with a
relative phase of π/3 (absolute phases : π/3 and 2π/3)

A regular array of 121 microphones (11×11) is positioned at a distance of 0.8 m above the
source plane as illustrated in Figure 1. The microphones, separated by 0.15 m, form an array
of 1.5 m × 1.5 m. The imaging domain has the same dimensions and is discretized in a grid
of 51× 51 pixels. The two stationnary sources radiate at 1500 Hz and a random uniformely
distributed noise of (SNR=20 dB) is added to the signal measured by each microphone. In the
following, three algorithms are compared for the identification of the velocity field, namely:
Beamforming (BF) as presented in Eqn. 10, Pseudo-Inverse using the truncated SVD of [G]
according to Eqn. 5 (PISVD) and the iterative Phase Coherence Algorithm (iPCA).

vBF
s =

2π

Ae jωρ0M

M

∑
m=1

pmG∗ms
|Gms|2

(10)

As shown on the left part of Figure 6, at the first iteration (first use of the phase coherence
thresholding), the iPCA rejects approximately half the pixels of the imaging domain (white
pixels). This means that the resolution using the regularized pseudo-inverse of [G] on this
new imaging domain is already faster when compared with the standard PISVD. After only a
few iterations the imaging domain converges toward the extent of the two pistons, resulting
in approximately a domain of one tenth the size of the original domain containing only active
elements. The right part of Figure 6 shows the normal velocity evaluation of the whole imaging
domain given the domain obtained at the last iteration.

From Figure 6, the velocity field evaluated using the iterative algorithm corresponds to the
instantaneous velocity of a snapshot at time t = 0 of both pistons (0.01e jπ/3 = 0.05 m and
0.01e j2π/3 = −0.05 m) . Moreover, it is clear that the boundaries of the two pistons are well
identified. To help visualizing the advantage of the iterative PC algorithm, the amplitude of the
velocity field (in dB) and the instantaneous phase maps are presented in Figure 7 for the BF, the
PISVD and the iPCA algorithms respectively.

It is clear from Figure 7 that the three presented algorithms localize the two pistons (and their
absolute phases) with good precision. However, the magnitude maps provided by the BF and
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Figure 6: (left) Pixel rejection process and identification of the boundaries of the pistons using
the iPCA algorithm and (right) resulting velocity map obtained after 15 iterations

Figure 7: Velocity magnitude in dB (top row) and instanteneous phase map (bottom row) ob-
tained with the BF, PISVD and iPCA respectively.

PISVD algorithms show important artefacts (sidelobes). The dynamic range of the magnitude
map obtained with the PISVD is larger than the one from the BF. Such artefacts are not present
on the magnitude map obtained using the iPCA since the thresholding on the phase coherence
rejected these pixels in the iterative process. Moreover, this pixel rejection process considerably
improves the localization of the boundaries of the radiating elements. In order to show the po-
tential of evaluating the acoustic radiated power using the iPCA, the presented tools are applied
to the case of a simply-supported vibrating plate in the next section.

8



7th Berlin Beamforming Conference 2018

3.2 Simply-supported plate

For the following, a simply-supported baffled plate excited using a point force is considered.
The velocity of the structure is obtained using the modal summation method:

v(x,y) =
∞

∑
m=1

∞

∑
n=1

umnφmn(x,y) (11)

where umn is the velocity amplitude of mode (m,n) and φmn is the shape of mode (m,n) as
defined in [11]. Let’s consider an aluminium plate with a thickness of 2 cm, width (x axis) of
48 cm and length (y axis) of 42 cm, centered on the imaging domain and excited at the natural
frequency of its (2,2) mode. The amplitude (in dB) and phase of the velocity field reconstructed
from th BF, PISVD and iPCA are presented in Figure 8 for a regular array (11×11 microphones)
positionned at zm = 1.5 m above the structure and for a SNR of 14 dB.

Figure 8: Velocity magnitude in dB (top row) and instanteneous phase map (bottom row) ob-
tained with the BF, PISVD and iPCA respectiveley for the simply-supported plate

Like in case of the stationnary pistons, it is possible to observe from Figure 8 that the iPCA
correctly identifies the boundaries of the structure (represented by the dashed line). Indeed,
the points with low phase coherence (where no active source is present) are neglected in the
resolution of Eqn. 5. Consequently, a large dynamic range is obtained for the velocity magnitude
map and no sidelobes are observed. Moreover, the spatial resolution obtained using the iPCA is
better than for the two other algorithms. Indeed, the main lobes provided by the iPCA coincide
with the 4 antinodes of the stationnary source and do not extend over the boundaries of the plate.
This better identification of the velocity field helps evaluating the total radiated acoustic power.
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Indeed, as presented in Figure 9(c), the algorithm converges toward a closer value to the exact
radiated acoustic power (for this given configuration) than the regularized method. Acoustic
power estimations for configurations associated to different conditionning of [G] are presented
in Figure 9.

(a) (b) (c)

Figure 9: Radiated power estimation by the PISVD (green line), the iPCA (blue line) and exact
value (dashed line) for three different configurations: (a) SNR=20 dB and zm = 0.8 m,
(b) SNR=14 dB and zm = 0.8 m and (c) SNR=14 dB and zm = 1.5 m

As presented in Figure 9(a), the PISVD and iPCA give correct estimations of the total radiated
power when the vibrating structure is a few wavelengths away from the array (0.8 m ≈ 4λ )
and for a random (uniformely distributed) added noise resulting in a SNR of 20 dB. Figure 9(b)
shows that when measurement noise increases, the PISVD estimation of the total radiated power
becomes slidghtly less precise. Moreover, the iPCA converges slightly more slowly toward the
exact value. Finaly, Figure 9(c) shows that when the array is moved away from the vibrating
structure, the same observations as for Figure 9(b) occur. Indeed, an increase in zm results
in an increase of the conditioning number of [G]. This bad conditionning results in stronger
sensitivity to noise and in a power estimation error of about 2 dB for the PISVD algorithm.
However, using the iterative algorithm, the reduced imaging domain regularizes the inversion
and results in a correct evaluation of the acoustic radiated power. The number of required
iterations is however increased to 18 iterations before convergence. Although, moving the array
further away from the source (zm > 1.5 m) results in a wrong evaluation of the acoustic radiated
power from both methods since part of the radiated energy is directed away from the extent of
the antenna.

4 Conclusion

A new algorithm for vibroacoustic imaging and acoustic power estimation is herein presented.
The algorithm iteratively rejects points of the imaging domain for which the phase coherence
between the microphones is low. This results in a smaller linear system to solve and a better
estimation of the velocity field when compared to the resolution using the regularized pseudo-
inverse. It was shown that as the conditionning of [G] gets worst, the gain of using the phase
coherence algorithm before the regularized pseudo-inverse increases. Future work will be ori-
ented toward a time domain formulation in order to adapt the algorithm to non stationnary vi-
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broacoustic sources. The use of spatial coherence, phase coherence and time averaging should
lead to betteridentification of the boundaries od extended sources.
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