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Abstract

This paper covers the relationship between the far-field sound radiation of a planar acous-
tic source in the presence of a mean flow and the Spatial Fourier Transform of the source
strength distribution, and proposes an inverse approach for source strength estimation from
far-field data. It is shown that each microphone effectively “samples” the source wavenum-
ber spectrum at a specific wavenumber associated to its position; hence, a particular micro-
phone array geometry and location is inherently linked to a “visibility region” in the source
wavenumber domain, and the array performance is directly related to which wavenumber
spectrum components it is able to observe. It is also shown that this method is analyt-
ically equivalent to a classical frequency-domain beamforming when assuming far-field-
approximated transfer functions.

1 INTRODUCTION

While much research is done in acoustics in order to understand noise generation mechanisms,
some sources are hardly observable through direct measurements. In such cases, one can al-
ternatively estimate the strength of an acoustic source from measurements of its radiated field.
However, such procedure also pose its own set of challenges; for distributed sources, such as
vibrating plates, estimating the source strength distribution is further complicated by interfer-
ence between coherent source regions, particularly when measurements are performed close to
the source.

One form to tackle this difficulty is by considering the acoustic field far from the source, away
from zones of strong mutual interference. In the so-called far-field, the acoustic pressure can be
determined from the Spatial Fourier Transform - evaluated in the wavenumber domain - of the
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source strength distribution; hence, we can consider applying an Inverse Fourier Transform-type
approach to estimate the source distribution from the far-field sound measurements.

This paper presents a framework encompassing far-field sound radiation and source esti-
mation in a moving medium using the Spatial Fourier Transform; this framework naturally
encompasses sound propagation in a steady medium, and can be easily extended to consider
cross-spectral information when dealing with random sources. The present method also pro-
vides alternative explanations of some known limitations of classical array signal processing:
for example, the effects of a finite array angular aperture and array positioning with respect to
the source; the effects of the inherent sampling of the acoustic field by discrete microphones;
and the effects of convection on the source estimation process.

The proposed setup is shown in Figure 1. We consider a rectangular planar radiator immersed
in a moving medium with Mach number Mx = Ux/c0 in the +x direction; the radiator is mod-
elled as a planar distribution of point monopole sources. The microphone array is located over
a hemisphere around the source at a distance R, and we assume the microphones are in the
acoustic far-field of the planar radiator.

Ux

R
z

xy

Far-field microphone array

Planar source
Figure 1: Experimental setup diagram.

The remainder of the paper is as follows: Section 2 discusses in more details what is meant
by assuming far-field conditions and when such assumption can be considered valid, and Sec-
tion 3 presents the Spatial Fourier Transform. Section 4 describes the radiation of planar
sources in flow in the near-field, and shows how the acoustic far-field is analogous to a Spa-
tial Fourier Transform; it then presents the Inverse Fourier Transform method for source es-
timation from far-field measurements, and briefly discusses some of the characteristics of the
proposed method. Section 5 describes the problem in matrix form and compares its formulation
to classical frequency-domain beamforming. Section 6 presents some simulated test cases with
a single-frequency planar radiator, where different far-field array geometries are considered and
their performance compared. Finally, Section 7 presents the conclusions.
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2 THE FAR-FIELD APPROXIMATION

Closed-form analytical expressions for the acoustic radiation of a known sound source are gen-
erally not available for any observer location; however, simplified closed-form expressions can
be obtained with the (geometrical) far-field approximation, or Fraunhofer approximation. This
form of approximation is widely known and has been described in various textbooks [5, 8, 12].
However, not many authors in the acoustics community refer to it as the Fraunhofer Approx-
imation, as it is known in the optics community for describing diffraction[9]; consequently,
the same method is often presented in slightly different forms, with little effort being made in
highlighting its similarities or limitations.

Let us assume a planar acoustic source, such as a vibrating plate, with xs = (xs,ys,zs) denot-
ing a point over the source surface and x = (x,y,z) denoting the location of an observer. For
simplicity, let the source be located at the plane zs = 0, and let the origin of the coordinate
system be located at the source centre; see Figure 2 for a representation of the problem.

Let r denote the distance between the source point xs and the observer point x; in the geo-
metrical far-field, we can approximate the distance r as

r = ‖x−xs‖ ≈ ‖x‖−
x ·xs

‖x‖ (1)

= ‖x‖−‖xs‖cos(θ). (2)

r = ||x - xs||

x

xs

(a)

x

xs
θ

||xs|| cos(θ) r ≈ ||x|| - ||xs|| cos(θ)

(b)

Figure 2: Geometrical arrangement for integrating extended sources: (a) considering the ac-
tual distance r = ‖x−xs‖ between observer and source; (b) considering the approx-
imated distance r ≈ ‖x‖−‖xs‖cos(θ) using the Fraunhofer far-field approximation.
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Equation 1 can be defined as the Fraunhofer approximation. The Authors have explored some
concepts related to this approximation in a previous work [3], where it was derived by perform-
ing a Taylor series expansion of the source-observer propagation distance r and retaining the
first-order terms only. It was also shown that for a fixed observer distance R, this approximation
is valid for frequencies f < fmax, where

fmax =
Rc0

αD2 , (3)

where D is the source largest dimension, and α is a constant approximately equal to 2. At
frequencies higher than fmax, the distance error becomes comparable to a maximum acceptable
error and the approximation is not valid; the observer is then said to be in the geometrical
near-field of the source.

3 THE SPATIAL FOURIER TRANSFORM

The Spatial Fourier Transform is a widely used technique for studying wave phenomena; it
allows a scalar field in space to be decomposed into complex exponentials (i.e. plane waves)
defined over a normally infinite two- or three-dimensional wavenumber space; this transform
space includes waves with all possible wavelengths and directions of propagation within the
original space.

Descriptions of this method for modelling acoustic wave propagation in a steady medium
are available in many textbooks [7, 8, 17]. Recent examples of wavenumber analysis in aeroa-
coustics include wavenumber-space coherent deconvolution of the acoustic field recorded by a
microphone array [1, 2]; wavenumber-domain analysis of pressure fluctuations beneath a com-
pressible turbulent boundary layer in a flat plate[6]; and separation of acoustic components from
convective components in acoustic array measurements by using beamforming[10, 13].

The Spatiotemporal Fourier Transform of a spatial variable q(x, t) defined over the space
x = (x,y,z) can be written as [11]

Q(kx,ky,kz,ω) =
∫∫∫∫ +∞

−∞

q(x,y,z, t)e j(kxx+kyy+kzz−ωt) dt dxdydz. (4)

For a single-frequency variable that exists solely at the plane z = 0, the above equation sim-
plifies to

Q(kx,ky,ω) =
∫∫ +∞

−∞

q(x,y,ω)e jkxxe jkyy dxdy. (5)

Similarly, the Inverse Spatial Fourier Transform takes the form

q(x,y,ω) =
1

(2π)2

∫∫ +∞

−∞

Q(kx,ky,ω)e− jkxxe− jkyy dkx dky. (6)

4 SOUND RADIATION IN A MOVING MEDIUM

We now describe the relationship between the source strength distribution wavenumber spec-
trum and the acoustic far-field in a convected medium with mean flow of Mach number
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Mx = Ux/c0. All analyses done here are narrow-band and computed at a frequency ω , and
the implicit time dependence is e+ jωt . Similar relationships can be obtained for steady medium
conditions by assuming Mx = 0.

4.1 Acoustic Field Generated by a Continuous Source in Flow

The acoustic transfer function between a monopole source located at xs and an observer located
at x in a uniform flow and free-field conditions is defined by the convected Green’s function

GU(x|xs,ω) =
e− jk0r

4πβ 2r
e jk0Mx(x−xs), (7)

where the overline represents flow-transformed variables [4]:

x =
(
x,y,z

)
=

(
x

β 2 ,
y
β
,

z
β

)
, r = ‖x−xs‖ , β =

√
1−M2

x . (8)

We define a microphone array consisting of M observers at positions xm, all at a radius R
from the source centre. A continuous monopole source distribution of strength q(xs,ω) and
located over the plane zs = 0 will generate an acoustic field at the m-th microphone location of
the form

p(xm,ω) =
∫

ys

∫
xs

q(xs,ω)GU(xm|xs,ω) dxs dys. (9)

Equation 9 fully describes the acoustic field produced by the source distribution q(xs,ω) at
any observer position, but it has no analytical closed form. By assuming geometrical far-field
conditions, we can use Eq. 1 in flow-transformed coordinates to approximate r in the convected
Green’s function and obtain a far-field-approximated Green’s function of the form

GFF(x|xs,ω) = e− jk0‖x‖e jk0
x·xs
‖x‖ 1

4πσx
e jk0Mx(x−xs) (10)

=
1

4πσx
e− jk̂·(x−xs), (11)

where σm is the flow-corrected distance of the m-th observer to the source centre

σm =
√

x2
m +β 2 (y2

m + z2
m) = β

2 ‖xm‖ , (12)

and k̂m is a wavenumber vector dependent on the m-th observer position of the form

k̂m =
(
k̂x,m, k̂y,m, k̂z,m

)
(13)

=

(
k0

(
xm−Mxσm

β 2σm

)
,k0

ym

σm
,k0

zm

σm

)
. (14)

Note that while the convected Green’s function in Eq. 9 must be evaluated over flow-
transformed spatial coordinates, its far-field approximation (Eq. 11) is a function of non-
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transformed spatial coordinates; effectively, the far-field approximation allows us to express
the convection effects in the wavenumber domain instead of the spatial domain.

We can then introduce Eq. 11 into Eq. 9 and rewrite it as

p(xm,ω)≈ e− jk̂m·xm

4πσm

∫
ys

∫
xs

q(xs,ω)e jk̂m·xs dxs dys. (15)

Note that the double integral term in Eq. 15 is identical to a two-dimensional Spatial Fourier
Transform of the source strength distribution evaluated at the wavenumber k̂m = (k̂x,m, k̂y,m).
We can then write

p(xm,ω)≈ e− jk̂m·xm

4πσm
Q
(
k̂x,m, k̂y,m,ω

)
. (16)

We propose the following interpretation of Eq. 16: the acoustic field seen by the observer
at xm is approximated by a plane wave of the form e− jk̂·x, with complex amplitude given by
Q(k̂x,m, k̂y,m)/4πσm

By tracing the relationship between all possible observer locations over a hemisphere sur-
rounding the acoustic source and their corresponding wavenumbers, we obtain the “acoustic
domain” [10] of the wavenumber spectrum as all wavenumbers (kx,ky) contained inside the
curve

(kx + kx1)
2

r2
1

+
k2

y

r2
2
= 1, (17)

where

kx1 =
k0Mx

β 2 , kr1 =
k0

β 2 , kr2 =
k0

β
. (18)

Equation 17 represents an ellipse in the (kx,ky) plane, centred at (−kx1,0) and with a semima-
jor axis kr1 and a semiminor axis kr2 [14], as shown in Figure 3; we refer to it as the “radiation
ellipse”. Wavenumber components located inside the ellipse correspond to waves reaching an
observer in the far-field, while wavenumbers outside the ellipse correspond to evanescent waves
and do not reach the far-field. In the absence of mean flow, the radiation ellipse reduces to a
“radiation circle” of radius k0, also shown in Figure 3.

4.2 Inverse Equation for Far-Field Source Estimation

We can now extend this methodology and write the inverse problem - estimating the source
distribution from the far-field pressure measurements - as an Inverse Fourier Transform. Let
us invert Eq. 16 and obtain an estimate of the source wavenumber spectrum from the acoustic
far-field observations:

Q
(
k̂x,m, k̂y,m,ω

)
≈
(

e− jk̂m·xm

4πσm

)−1

p(xm,ω). (19)
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kx

ky

(−kr1 − kx1, 0) (kr1 − kx1, 0)(−kx1, 0)

(−kx1, kr2)

(−kx1,−kr2)

Figure 3: Radiation ellipse and radiation circle.

The observed far-field acoustic pressure provides an estimate to the source wavenumber spec-
trum at a particular wavenumber sample inside the radiation ellipse. Hence, if we can observe
the acoustic far field over the entire hemisphere surrounding the source, it is possible to esti-
mate the source spatial distribution via an Inverse Spatial Fourier Transform evaluated over the
radiation ellipse:

q(xs,ys,ω)≈ 1
(2π)2

∫
kx

∫
ky

Q(kx,ky,ω)e− jk·xs dkx dky, (kx,ky) ∈ Rad. Ellipse. (20)

In practice, however, the acoustic field is sampled by the microphone array; the above integra-
tion in wavenumber domain then becomes a sum over the samples given by the M microphones:

q(xs,ys,ω)≈ 1
(2π)2

M−1

∑
m=0

Q
(
k̂x,m, k̂y,m,ω

)
e− jk̂m·xs ∆Sm, (21)

where ∆Sm is an equivalent area in the wavenumber domain corresponding to the m-th mi-
crophone observation. These areas can be estimated using a modified Voronoi diagram of the
array sampling in the wavenumber domain. Figure 4 shows this diagram for the array used in
the first simulation example: red dots indicate the microphone samples, the dashed-dotted black
line is the radiation ellipse, and the blue pentagons are the vertices of the Voronoi diagram that
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Figure 4: Example of estimation of equivalent area in wavenumber space using modified
Voronoi diagram; see text for detailed description.

fall within or nearby the radiation domain.

5 MATRIX FORMULATION AND COMPARISON WITH CLASSICAL
BEAMFORMING

We will now describe the same method in matrix form, and show how it compares to classical
frequency-domain beamforming.

5.1 Matrix Formulation - Direct Problem

A single-frequency forward-propagation model can be described as follows: a vector pM×1 of
acoustic pressure observations is related to a vector qN×1 of discretised source strengths via a
matrix GM×N of transfer functions:

p = Gq (22)

=

 | | |
g0 g1 . . . gN−1
| | |

q. (23)

Each vector gn contains the transfer functions from the n-th source to all M observers and
describes the type of acoustic propagation from source to receiver; for example, convected
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point monopole (Eq. 7).
By populating the transfer function matrix G with the far-field-approximated point monopole

transfer function (Eq. 11) we can write the direct problem in the far-field as

p≈GFFq (24)

=

 | | |
gFF

1 gFF
2 . . . gFF

N
| | |

q (25)

=


e− jk̂0·x0

4πσ0
e jk̂0·xs0 . . .

e− jk̂0·x0

4πσ0
e jk̂0·xs(N−1)

... . . . ...
e− jk̂M−1·xM−1

4πσM−1
e jk̂M−1·xs0 . . .

e− jk̂M−1·xM−1

4πσM−1
e jk̂M−1·xs(N−1)

q (26)

=


e− jk̂0·x0

4πσ0
. . . 0

... . . . ...

0 . . .
e− jk̂M−1·xM−1

4πσM−1


 e jk̂0·xs0 . . . e jk̂0·xs(N−1)

... . . . ...
e jk̂M−1·xs0 . . . e jk̂M−1·xs(N−1)

q (27)

= REq. (28)

Thus, the direct problem in the far-field can be written as the product of a diagonal ma-
trix RM×M containing the phase shifts and attenuation related to the observer location, and a
Fourier Transform-like matrix EM×N mapping the source strength at xsn to a observer-dependent
wavenumber km.

The direct problem can then be expressed as

p≈GFFq (29)
= REq (30)
= Rqk, (31)

where qk = [Q[0], . . . ,Q[M−1]]T is a vector of source strength Spatial Fourier Transform
samples evaluated at the M discrete wavenumbers k̂[m].

If we instead desire to obtain the cross-spectrum Cpp of the acoustic pressures, it can be
easily formulated from the cross-spectrum Ckk of the source wavenumber spectrum or of the
cross-spectrum Cqq of the spatial source distribution:

9
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Cpp = E
{

ppH} (32)
= RE E

{
qqH} EHRH (33)

= RECqqEHRH (34)
= RCkkRH . (35)

5.2 Matrix Formulation - Inverse Problem

We would like to invert the above equation and obtain an estimate q̃ of the source strength vector
q. A first step is to obtain an estimate q̃k of the source strength Spatial Fourier Transform from
the vector of microphone complex pressures:

q̃k = R†p, (36)

where R† is the inverse of R:

R†
M×M = R−1 (37)

=



(
e jk̂0·x0

)
4πσ0 0 . . . 0

0
(

e jk̂1·x1

)
4πσ1 . . . 0

...
... . . . ...

0 0 . . .
(

e jk̂M−1·xM−1

)
4πσM−1

 . (38)

Since the matrix R only contains the attenuations and phase shifts related to the microphone
positions, its inverse is not ill-conditioned and can be inverted numerically. Finally, from q̃k,
we can compute the source distribution estimate q̃ by performing an Inverse Spatial Fourier
Transform - i.e. left-multiplying by EH :

q̃ = EH q̃k (39)
= EHR†p. (40)

Therefore, the source estimation procedure consists of inverting a well-conditioned diagonal
matrix and taking the complex-conjugate of a matrix of phase shifts; all these steps are easily
calculated.

Once again, if we desire to obtain an estimate C̃qq of the source strength cross-spectrum, it
can be simply formulated as

C̃qq = E
{

q̃q̃H} (41)

= EHR† E
{

ppH} R†HE (42)

= EHR†CppR†HE. (43)
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5.3 Comparison with Classical Beamforming

A beamformer can be described as a weighted linear combination of the array sensor signals that
estimates the source strength at one scanning location; let wn denote the vector of M complex
weights that allows the estimation of the n-th source strength qn:

q̃n = wH
n p. (44)

We will call the vector wn the steering vector. Many formulations for steering vectors are
possible, and are generally calculated from the assumed transfer function matrix entries. We
propose a vector-wise inversion of the entries of the transfer function G as our steering vector:

wn =
gn

‖gn‖2 . (45)

Equation 45 can be obtained by minimizing the difference ‖p−qngn‖2 (see Sijtsma[15]),
and correctly recovers the source strength for the case of a single point source located at the
scanning position.

The vector of estimated source strengths is given by

q̃ = WHp (46)

=


− wH

1 −
− wH

2 −
...

− wH
N −

p (47)

(48)

If we choose to populate our transfer function matrix with far-field Green’s functions, our
steering vector can be written as

wFF
m,n =

(
e− jk̂m·xn4πσm

)
e jk̂m·xsn. (49)

The Inverse Problem can be written as

11
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q̃ = WHp (50)

=


− wH

1 −
− wH

2 −
...

− wH
N −

p (51)

=


(

e jk̂0·x04πσ0

)
e− jk̂0·xs0 . . .

(
e jk̂M−1·xM−14πσM−1

)
e− jk̂M−1·xs0

... . . . ...(
e jk̂0·x04πσ0

)
e− jk̂0·xs(N−1) . . .

(
e jk̂M−1·xM−14πσM−1

)
e− jk̂M−1·xs(N−1)

p (52)

=

 e− jk̂0·xs0 . . . e− jk̂M−1·xs0

... . . . ...
e− jk̂0·xs(N−1) . . . e− jk̂M−1·xs(N−1)



(

e jk̂0·x04πσ0

)
. . . 0

... . . . ...
0 . . .

(
e jk̂M−1·xM−14πσM−1

)
p (53)

= EHR†p. (54)

Given that Equation 54 is identical to Eq. 40, the beamforming formulation as computed
from a far-field approximated Green’s function is identical to the proposed Fourier-based for-
mulation. Of course, it follows from the above that the expressions for beamforming with the
cross-spectral matrix will also be identical to the proposed formulations.

6 SIMULATIONS

We now present some simulation results by implementing the proposed method in Python pro-
gramming language. All arrays presented here are designed as a “sunflower” spiral pattern [16]
in the 2D (x,y) plane, and are then extrapolated to the hemisphere above the source; this allows
for an arbitrary number of microphones to be positioned in the hemisphere in an approximately
uniform distribution in wavenumber domain. The array is positioned far enough from the source
so that Eq. 3 is satisfied.

The simulated source is rectangular, with a deterministic, narrowband source strength distri-
bution given by a single complex exponential; the source dimensions are (Dx,Dy) = (λ0,1.5λ0),
and the mean flow Mach number is Mx = 0.5. The acoustic field at the microphones is obtained
via a numerical evaluation of Eq. 9 (using the exact Green’s function - Eq. 7), and the inversion
steps follow the method described above using the far-field-approximated Green’s function (Eq.
11).

The estimated wavenumber spectrum is evaluated at the k̂m points corresponding to each
microphone using Eq. 19. In the next examples, regions between the wavenumber samples
have been interpolated and are shown for visualisation purposes only; all results are obtained
from the discrete wavenumber spectrum only. We also define a relative source estimation error
of the form

qerror(x,y) = q(x,y)− q̃(x,y), (55)

12
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Figure 5: Source strength distribution (left) and wavenumber spectra (right), with radiation
ellipse indicated in wavenumber domain; the Mach number is Mx = 0.5.

and we plot this source error as a metric to evaluate the source estimation process.

6.1 Simulated Case 1: Planar Radiator, Hemispherical Array

Case 1 is shown in Figure 6 and consists of a hemispherical array covering the entire angular
above the source; there are 150 microphones positioned in the source far-field, at equal distance
from source centre. Clearly, this is a highly impractical array due to large number of micro-
phones and wide spatial coverage; however, the source wavenumber spectrum is well sampled
inside the radiating ellipse, including the source main lobe.

The source spatial distribution is recovered moderately well; some inaccuracies are visible,
although overall levels and spatial characteristics are correctly recovered. Inaccuracies might
be due to the lack of evanescent components, which can’t reach the far-field and are responsible
for the fine details of the source spatial structure; the estimation error is concentrated along the
edges of the source, where there are sharp transitions corresponding to high spatial frequency
phenomena.

6.2 Simulated Case 2: Planar Radiator, Spherical Cap Array

Case 2 is shown in Figure 7 and consists of a spherical cap array, covering a section of the
hemisphere immediately above the source; there are 75 microphones positioned in the source
far-field, at equal distance from the source centre. This array is closer to what actual laboratory
experimental conditions would be than the previous array; however, the source wavenumber
spectrum is not well sampled inside radiating ellipse, and does not include the main lobe.

The source spatial distribution is recovered poorly; overall levels and spatial characteristics
are entirely misrepresented, and the estimation error is high over the entire source surface. In-
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Figure 6: Case 1: Hemispherical array covering the entire angular space: (a) Microphone
positions in spatial domain and wavenumber domain; (b) Estimated source spatial
distribution and wavenumber spectrum; (c) Source estimation error in spatial do-
main.
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accuracies might be due the lack of strongly energetic components, since the “visibility region”
of this array consists only of sidelobes and contains many nulls. It is worth noting that the main
spatial component is absent from the measurements, and hence made “invisible”.

6.3 Simulated Case 3: Planar Radiator, Modified Cap Array

Case 3 is shown in Figure 8 and consists of a modified cap array, similar to Case 2, but covering
a different section of the hemisphere - this time closer to the main radiation lobe. Once again,
there are 75 microphones positioned in the source far-field and at equal distance from the source
centre. This is an impractical array design due to non-uniform sampling of the angular domain
and awkward microphone positioning. The source wavenumber spectrum is again not well
sampled inside radiating ellipse, but for this case it does include a significant portion of the
main radiation lobe.

The source spatial distribution is partially recovered, with overall levels and spatial character-
istics are approximately represented, if perhaps not very accurately. Inaccuracies might be due
the lack of the remaining wavenumber components, responsible for the finer details; while the
estimation errors are higher than in the first case, these are again concentrated along the edges
of the source, where high frequency phenomena are expected.

7 CONCLUSIONS

We have presented a method relating the Spatial Fourier Transform of a source distribution to its
radiated acoustic far-field, and proposed an inversion method to obtain the source distribution
from the far-field measurements. This framework is valid for acoustic propagation in both
steady and convected media, and it arrives at some of the already-known limitations in array
signal processing from a slightly different perspective.

The proposed wavenumber space sampling is directly dependent on the microphone array
geometry, but through a non-uniform mapping into k-space; a uniform sampling in wavenumber
domain requires an array with a dense arrangement of microphones immediately above the
source, and a sparser arrangement towards the sides of the hemisphere. Of course, the reverse
is also valid: a uniform arrangement of microphones in the angular domain will lead to a non-
uniform arrangement in the wavenumber domain.

There is a direct association between the angular aperture of a given microphone array and
which wavenumber components it can successfully recover - i.e. each array has an equivalent
“visibility region” in the wavenumber domain. Different array apertures and positions will
observe different portions of the wavenumber spectrum, changing which components can be
estimated; this has a direct consequence on the source distribution estimation in the spatial
domain, as demonstrated in the simulations.

Another consequence of performing measurements in the far-field is that evanescent
wavenumber components - outside of the radiation ellipse - cannot be observed by definition.
This imposes a spatial resolution limit on the source distribution estimation, since high spatial
frequency phenomena (i.e. fine details) cannot be observed. It is expected that measurements
performed in the near-field should be able to recover some evanescent components, although to
what exact extent is still not known.
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Figure 7: Case 2: Hemispherical cap array covering a portion of the angular space: (a) Mi-
crophone positions in spatial domain and wavenumber domain; (b) Estimated source
spatial distribution and wavenumber spectrum; (c) Source estimation error in spatial
domain.
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Figure 8: Case 3: Modified cap array covering a portion of the angular space: (a) Micro-
phone positions in spatial domain and wavenumber domain; (b) Estimated source
spatial distribution and wavenumber spectrum; (c) Source estimation error in spatial
domain.
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Finally, while the spatial resolution limit might be considered a disadvantage when attempt-
ing to recovering the exact source spatial distribution, we can also interpret the method as an
estimation of the source radiating behaviour only; such “equivalent source” description should
explain the source far-field behaviour and ignore components that do not affect the far-field.

Acknowledgments

Fabio Casagrande Hirono would like to thank the National Council for Scientific and Tech-
nological Development (Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico -
CNPq) of the Federal Government of Brazil for sponsoring his PhD degree under the “Science
Without Borders” program.

References

[1] C. Bahr and L. Cattafesta. “Wavespace-based coherent deconvolution.” In 18th
AIAA/CEAS Aeroacoustics Conference. 2012. AIAA Paper 2012-2227.

[2] C. Bahr and L. Cattafesta. “Wavenumber-frequency deconvolution of aeroacoustic micro-
phone phased array data of arbitrary coherence.” Journal of Sound and Vibration, Vol.
382, 13–42, 2016.

[3] F. Casagrande Hirono, P. Joseph, and F. Fazi. “Aerofoil source estimation from nearfield
array measurements.” In 23rd AIAA/CEAS Aeroacoustics Conference. 2017. AIAA Paper
2017-4178.

[4] C. J. Chapman. “Similarity variables for sound radiation in a uniform flow.” Journal of
Sound and Vibration, Vol. 233, No. 1, 157–164, 2000.

[5] A. Dowling and J. Ffowcs Williams. Sound and Sources of Sound. Ellis Horwood, Chich-
ester, UK, 1983.

[6] K. Ehrenfried and L. Koop. “Experimental study of pressure fluctuations beneath a com-
pressible turbulent boundary layer.” In 14th AIAA/CEAS Aeroacoustics Conference. 2008.
AIAA Paper 2008-2800.

[7] F. Fahy and P. Gardonio. Sound and Structural Vibration. Academic Press, Oxford, UK,
2007.

[8] S. Glegg and W. Devenport. Aeroacoustics of Low Mach Number Flows. Elsevier Aca-
demic Press, London, UK, 2017.

[9] J. Goodman. Introduction to Fourier Optics. Roberts & Company, Colorado, USA, 2005.

[10] S. Haxter and C. Spehr. “Infinite beamforming: Wavenumber decomposition of sur-
face pressure fluctuations.” In 5th Berlin Beamforming Conference. 2014. BeBeC Paper
BeBeC-2014-04.

18



7th Berlin Beamforming Conference 2018 Casagrande Hirono, Joseph and Fazi

[11] D. Johnson and D. Dudgeon. Array Signal Processing. Prentice-Hall, New Jersey, USA,
1993.

[12] L. Kinsler, A. Frey, A. Coppens, and J. Sanders. Fundamentals of Acoustics. John Wiley
and Sons, London, UK, 2000.

[13] L. Koop and K. Ehrenfried. “Microphone-array processing for wind-tunnel measurements
with strong background noise.” In 14th AIAA/CEAS Aeroacoustics Conference. 2008.
AIAA Paper 2008-2907.

[14] H.-S. Kwon, Y. Niu, and Y.-J. Kim. “Planar nearfield acoustical holography in moving
fluid medium at subsonic and uniform velocity.” Journal of the Acoustical Society of
America, Vol. 126, 1823–1832, 2010.

[15] P. Sijtsma. “Phased array beamforming applied to wind tunnel and fly-over tests.” Techni-
cal Report NLR-TP-2010-549, National Aerospace Laboratory (NLR) - the Netherlands,
2010.

[16] H. Vogel. “A better way to construct the sunflower head.” Mathematical Biosciences, Vol.
44, 179–189, 1979.

[17] E. Williams. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography.
Academic Press, London, UK, 1999.

19


	1 INTRODUCTION
	2 THE FAR-FIELD APPROXIMATION
	3 THE SPATIAL FOURIER TRANSFORM
	4 SOUND RADIATION IN A MOVING MEDIUM
	4.1 Acoustic Field Generated by a Continuous Source in Flow
	4.2 Inverse Equation for Far-Field Source Estimation

	5 MATRIX FORMULATION AND COMPARISON WITH CLASSICAL BEAMFORMING
	5.1 Matrix Formulation - Direct Problem
	5.2 Matrix Formulation - Inverse Problem
	5.3 Comparison with Classical Beamforming

	6 SIMULATIONS
	6.1 Simulated Case 1: Planar Radiator, Hemispherical Array
	6.2 Simulated Case 2: Planar Radiator, Spherical Cap Array
	6.3 Simulated Case 3: Planar Radiator, Modified Cap Array

	7 CONCLUSIONS

