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Abstract

Microphone array design is a discipline of great interest for the scientific community
and end-users because its properties have a big impact on source localization performance.
This publication addresses the design methodology and geometry optimization of spherical
microphone arrays for environmental source localization using time-domain beamform-
ing algorithm, more precisely the Generalized Cross-Correlation (GCC). In the proposed
methodology, a set of conceptual decisions such as array design, frequency range and num-
ber of microphones take the form of non-linear constraints in a single or multi-objective
genetic algorithm for the optimization of the microphones positioning. The fitness crite-
ria are based on the maximization of the sum of all available differences of distances, or
spatial orientations, or both, between pairs of microphones. These criteria are empirically
supported by the geometric intrinsic nature of the Spatial Likelihood Functions (SLFs), the
constitutional functions of the GCC: indeed, under certain conditions, the geometric proper-
ties of a SLF hyperbola can be controlled by the distance and the relative spatial orientation
between the associated pair of microphones. These properties can be used to improve re-
jection of side-lobes in the noise source map. The experiments are based on numerical
simulations: first, a statistical analysis of the optimization is performed to demonstrate its
repeatability. It was proved that the single-objective criteria are effective to induce side-
lobe rejection and similar in the design space (they converge to a same region in the Pareto
front). Latter, a scenario with distributed broadband sources is investigated. Compared to
a regular microphone arrangement, the results show that an optimized array generates a
smoother cartography and better source localization.
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1 INTRODUCTION

In engineering science, noise control and attenuation aims the conception of human-friendly
buildings, vehicles and machines from the acoustic point of view . The noise abatement usu-
ally starts with a first study requiring sources localization and its hierarchical classification.
Currently, the popular techniques used for such a study are [1]:

• Noise assessment with sound level meters: the device measures the sound pressure level
for a given point but does not provide the localization of the source;

• Source localization with sound intensity probe: two microphones are used to measure the
pressure and acoustic velocity. Based on these quantities an intensity vector can be com-
puted, the sound direction obtained and a source map constructed from the measurement.
The technique requires multiple measurements in the near-field, which in the most part of
the cases are only feasible for small machines;

• Source localization using microphone array and beamforming: the technique consists on
the calculation of the sound direction from the time-lag of signals of two or more mi-
crophones. Compared to previous techniques, beamforming requires more hardware and
more computational power to run. The technique is interesting because the measurement
does not require multiple captures.

The source detection capability of microphone antennas is directly related to the available
hardware: increasing the number of microphones may offer better source localization at the ex-
pense of a higher computational cost while improving the microphones distribution may provide
better source localization without additional computational cost. Different array geometries can
be used depending on the situation: while planar arrays are directive and recommended for
source localization in pass-by vehicles, spherical arrays are deployed in environmental source
localization.

The objective of this paper is to propose an optimization methodology of spherical arrays
geometry for environmental source localization based on beamforming algorithm. The source
localization technique used is the Generalized Cross-Correlation (GCC). Nöel et al. [2] and
Padois et al. [3] have described the implementation of the GCC algorithm for the proposed
application.

The GCC technique was proposed by Knapp & Carter [4] as a maximum likelihood estimator
for the time-lag of two signals. The correlation is obtained from the signals in the frequency do-
main. This frequency domain approach allows the insertion of a frequency weighting filter in the
cross-correlation for a better time-lag estimation. Among the most important filters, the Phase
Alignment Transformation (PHAT) normalizes, the microphone signal amplitude information
and keeps the phase information. GCC-PHAT has been successfully used in acoustic source
localization and has shown good results in the presence of reverberation [5]. More recently, it
was mathematically proven that PHAT is equivalent to the maximum likelihood estimator in
cases where the signal-to-noise ratio was low [6].

Since Knapp & Carter [4], the GCC has been extensively used and improved for source
localization using microphone arrays of different shapes. It was shown that the noise source map
is the result of the summation of the cross-correlations between individual pairs of microphones
in the array. The geometric nature of each term in this summation, also called Spatial Likelihood
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Function (SLF), was studied in the last two decades by Dibiase [7], Aarabi [8] and Velasco et
al. [9]. Padois et al. [10] studied the mechanism of side-lobe rejection and main-lobe narrowing
obtained in noise sources maps computed using geometric and harmonic means on the GCC
summation. Salvati et al. [11] proposed an adaptative scanning domain that also improves
source localization performance. From the technological perspective, state-of-the-art devices
composed of MEMS microphones and FPGA boards for digital real-time processing have been
implemented in numerous applications such as source localization in robotics [12].

Array design aspects such as the influence of array positioning and microphone distribu-
tion on the final source localization have also been investigated. For example, Rafaely [13]
describes the formulations for source localization from the Fourier transform decomposition
in the spherical harmonics domain and showed how this theory may be used to optimize the
spherical array beam pattern and other performance parameters. Hu et al. [14] used a mini-
mum variance estimator of the time-lag to design an array that guarantees an omnidirectional
performance for source localization. Evolutionary optimization algorithms [15] or convex opti-
mization [16] have been used for optimal geometry of planar arrays for near-field and far-field
imaging enhancement as a function of beamforming beam-pattern cost functions.

In this work, specific fitness criteria for spherical array geometry optimization used with
the GCC are proposed and genetic algorithms ([17], [18]) are used to solve the optimization
problem. The criteria are designed to reject side-lobes generated from the GCC summation.

This article is divided in the following sections: Section 2 explains the GCC technique in the
context of localization of environmental sources, the mathematical and geometrical locus of the
SLFs, how SLFs and microphones can be positioned for side-lobe rejection and how geometric
criteria can be built from these concepts. Section 3 details the optimization methodology. Sec-
tion 4 is dedicated to the numerical results: a statistical analysis of the optimization is performed
and the performances of the optimized arrays are discussed.

2 Time domain source localization technique

2.1 The Generalized Cross-Correlation

Consider an array of microphones distributed in space and subjected to sound waves. The sum-
mation of the microphone signals in the array can be expressed in the form of a likelihood
estimator combining the delay of each pair of microphones (m,n) as a cross-correlation func-
tion [4]:

Rxm,xn(τ) = E {xm(t)xn(t + τ)} , (1)

where xm and xn are the microphone signals. The argument τ that maximizes this estimator
provides the estimation of time-lag for this pair of microphones. It is considered a scanning po-
sition rk where the source is searched. The time-lag τ =∆tmk−∆tnk, where ∆tik is the time delay
between a scan point in rk and the microphone i, may be intuitively understood as the time-lag
between the acoustic signals when they reach the microphones pair (m,n). Because signals are
a finite observation of time, the cross-correlation can only be estimated and E denotes expec-
tation. The beamformer output may be expressed as an output power Yrk

BF , the summation of
all possible cross-correlations between the unique pairs obtained from M microphones in the
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array:

Yrk
BF =

M

∑
m=1

M

∑
n=m+1

Rxm,xn(∆tmk−∆tnk). (2)

The estimated source positions will be provided by a set of τm,n =
[|∆tm1−∆tn1| , ..., |∆tmk−∆tnk|] that maximizes the Equation 2. Note that τm,n = τn,m,
therefore pairs are computed only once.

In order to improve the accuracy of the estimator, a frequency weighting filter, Ψ( f ), can be
introduced in the cross-correlation computation. Equation 1 can be expressed as the following
inverse discrete Fourier transform:

Rxm,xn(τ) =
N f−1

∑
f=0

Ψ( f )CXm,Xn( f )e
j2π f τ

Nf , (3)

where Cxm,xn is the power cross-spectrum of microphone signals xm and xn and f the frequency
index comprised between 0 and N f − 1. PHAT is the most frequently used filter in source
localization, the inverse of the absolute value of CXm,Xn:

Ψ( f ) =
1

|CXm,Xn|
=

1
|Xm( f )Xn( f )∗|

. (4)

The computation of Equation 3 presents some constraints: Rxm,xn is a function of the observa-
tion time t and might present time-lags τ surpassing the maximum physically allowable time-lag
max(τm,n) between a pair of microphones in the array and the scanning zone. Henceforth the
cross-correlation needs to be literally computed as in Equation 3, truncated in τ <= max(τm,n)
and interpolated in τm,n, respecting the physical constraints of the problem [3]. A truncated
cross-correlation Řxm,xn(τm,n) is obtained for each pair of microphones and is also called Spatial
Likelihood Function (SLF) [19].

For each scanning position rk, the summation of all SLFs available in an array (as in Equa-
tion 2) creates the corresponding noise source map. In the case of spherical arrays and en-
vironmental source localization the scanning space is usually spherical. Hence, the scanning
positions rk are obtained from a discretization of the scanning space in coarse grid elements
of size ∆φ −∆θ (azimuth and elevation), projected in a distance equivalent to the separation
between the sources and the array, if the waves are spherical. In this paper, it will be supposed
the hypothesis of sources in the far-field and planar waves. A scanning position rk may be more
precisely understood as a scanning direction in the direction φ −θ because the distance of the
projection to the array is irrelevant.

2.2 The Spatial-Likelihood Function

As long as the beamformer output Yrk
BF is a function of the scanning position rk , the mathe-

matical definition of the SLF can be strictly related to Řxm,xn(τm,n(rk)). Two geometrical spaces
are defined: Ω, the space of all scanning positions rk belonging to the scanning zone and H,
the space of positions rh satisfying the condition τm,n(rh) = τm,n(rS), S being a real source.
The geometric locus of the SLF belongs to that space H, according to the first argument of the
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Figure 1: (a) The global coordinate system is defined in dashed-red while the local coordinate
system related to the pair of microphones (m,n) (separated by a distance 2a) is in
solid-blue. rm, rn and rs are the coordinates of microphones (m,n) and the source, re-
spectively. (b) Symmetric hyperbolas are obtained from the possible combinations of
pairs of microphones, which generates opposite time-lag values. rh is the coordinate
vector representing points belonging to the hyperbola.

following relationship [9]:

Řxm,xn(τm,n(rk)) =

{
Řxm,xn(τm,n(rS)) ∀rk ∈H
0, otherwise.

(5)

Considering the time-lag between acoustic signals, rh in space H will satisfy the following
condition:

τm,n(rh) = (‖rm− rh‖−‖rn− rh‖)/c0, (6)

where rm and rn are the positions of the pair of microphones (m,n) and c0 the speed of sound.
In order to study the locus of the SLF, it is appropriate to consider a local coordinate system

centered between a pair of microphones. Cartesian coordinates are considered with micro-
phones located at y = −a and y = +a, as in Figure 1.a. The time-lag between signals allow
the following equation, the ensemble of points (x,y) belonging to rh, with a time-lag equal to
τm,n(rS), allows the following equation to be written [8]:

4y2

(c0τm,n(rS))2 −
4x2

4a2− (c0τm,n(rS))2 = 1. (7)

Therefore the locus of positions corresponding to a given time-lag τm,n(rS) is an hyperbola
in the plane x− y of the type [20]:

y2

A2 −
x2

C2 = 1. (8)

The space H satisfying Equation 6 is not restricted to a plane. The 3D locus of the SLF is ob-
tained by the rotation of the hyperbola 7 around the y-axis defining an hyperboloid. Nonetheless,
as long as the source maps are two-dimensional, the two dimensional representation (Figure 1.b)
is sufficient.
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2.3 Geometric Criteria

The proposed fitness criteria for array geometry optimization consist in positioning pairs of
microphones in order to reduce the side-lobe generation. Considering the application to free
field source localization, the detailed comprehension of the mathematical and geometric nature
of the SLFs allows us to coin fitness criteria and design constraints to achieve this goal. The
following assumptions are made:

• The sources are considered to be static and behave as perfect monopoles;

• The sources are exterior to the array and in the far field. Under these conditions, the time-
lag τm,n is purely a function of the distance between the microphones and the relative
orientation of the pair to the source.

The fitness criteria induce a mechanism called ‘spatial whitening’. In this article, ‘spatial
whitening’ consists in omnidirectionally orient the SLFs around the point of origin of a source,
as described in Figure 2 and in Figure 3.

Three cases are presented: a noise source map obtained from aligned pairs of microphones
of same separation (Figure 2.a,b), two orthogonal pairs of same separation (Figure 2.c,d) and
orthogonal pairs with different separations (Figure 3). The left part of the figures shows an
arrangement of 4 microphones and a source. The hyperbolic shapes of the SLFs are represented
in the plan for the assigned pairs of microphones and intersect the spherical scanning space. The
right part of the figures illustrates the projection of the tridimensional SLFs (the hyperboloids)
projected in the spherical scanning space with azimuth-elevation angles (φ−θ ). The projection
is equivalent to the noise source map.

While in Figure 2.a,b the pairs of microphones (1,2) and (3,4) are aligned, causing an unfa-
vorable SLF summation, in Figure 2.c and d those same pairs are orthogonal. It can be observed
in Figure 2.d that the respective SLFs also intersect in a pin-location except for SLFs (1,4) -
(2,3) and (1,3) - (2,4), which are superimposed. Those SLFs belong to the parallel pairs of
microphones in the array. In the case of Figure 3, one of the microphones is moved, increasing
its separation from the other microphones. This results in a loss of parallelism between mi-
crophones and separates SLF (1,4) from (2,3) and (1,3) from (2,4). It can be concluded that
the reduction of the array redundancy in terms of microphones spacing and orientation induces
‘spatial whitening’ near the source.

Therefore, a first possibility to induce ‘spatial whitening’ is by positioning pairs of micro-
phones in such a way that, for a given global coordinate system, the orientations of the pairs
of microphones relative to the global system will be as different as possible. This procedure
should be equivalent to maximizing the sum of all available differences of orientation between
pairs of microphones, as follows:

[
e1, ...,ecp

]
where Cp =

(
M
2

)
⇒ FForient = argmax

(
Cp

∑
cp=1

Θ

(
ecp,e

′
cp

))
. (9)

M is the total number of available microphones, Cp is the number of pairs of microphones,
ecp is the unitary orientation vector for a pair of microphones (m,n):

ecp =
rm− rn
‖rm− rn‖

. (10)
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Figure 2: (a) Planar arrangement of aligned pairs of microphones. For convenience, only 2 of
the 6 SLFs are represented. (b) Representation of the summation of all 6 possible
SLFs in spherical coordinates. It is observed that all SLFs have the same y-axis sym-
metry and the source localization is impossible (the source is identified by a green
circle). (c) Planar arrangement of orthogonal pairs of microphones. (d) Representa-
tion of the summation of all 6 possible SLFs in spherical coordinates. It is observed
that most SLFs intersect orthogonally except for SLFs (1,4) - (2,4) and (1,3) - (2,4)
(superimposed).

e′cp
is the vector with better alignment among all microphone pairs to ecp . Θ is the angle

between ecp and e′cp
and is calculated from a scalar product.

Another optimization criterion is maximizing the sum of all available differences of micro-
phone separations among all possible pairs, as follows:

[
d1, ...,dcp

]
where Cp =

(
M
2

)
⇒ FFdist = argmax

(
Cp

∑
cp=1

∣∣∣dcp−d′cp

∣∣∣) , (11)
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Figure 3: (a) Planar arrangement of proposed pairs of microphones. For convenience, only 2
of the 6 SLFs are represented. (b) Representation of the summation of all 6 possible
SLFs in spherical coordinates. SLFs (1,4) - (2,4) and (1,4) - (2,4) are no longer
merged (the actual source is identified by a green circle).

where dcp is the separation (or the l2-norm) of a pair of microphones (m,n): ‖rm− rn‖. d′cp
is

the closest separation to dcp among all other pairs of microphones.
The difference of distances or orientations are the values used to compute the fitness function,

obtained from a summation over all pairs of microphones in the array.

3 Optimization solver : Genetic algorithm

Equations 9 and 11 are non-linear with respect to optimization variables and do not have closed-
form solutions. Additionally, the number of optimization variables (coordinates of the micro-
phones in the array) is twice or three times the total number of microphones. The search space
is hence multidimensional and increases rapidly with the number of microphones.

Several global optimization techniques have been proposed to solve such problems. In the
last decades a large number of methods based on Genetic Algorithms (GA) have been proposed,
with successful applications on engineering problems of many types [18]. GA is inspired from
evolutionary principles where a certain initial solution population is distributed on a search
space. The individuals possess intrinsic characteristics named genes. Each individual is first
ranked according to its ‘fitness’ with respect to the optimization criterion and a directly propor-
tional reproduction factor is attributed. A crossover is then realized between individuals with
larger reproduction factors. During a crossover, individuals share genes in order to produce a
new population. Nonetheless the reproduction and crossover steps may be carefully controlled
using mutation and non-dominant mechanisms, keeping a stable diversity and the optimal ex-
ploitation of the search space.

Like other evolutionary algorithms, GA allows solving multi-objective problems either with
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Figure 4: Block diagram of the proposed optimization methodology. NSGA stands for Non-
dominated Sorting Genetic Algorithm [18], the algorithm implemented in MATLAB
toolbox.

aggregation and non-aggregation methods 1. Nonetheless, GA tends to be more robust for a
larger variety of problems. Computational time not being a constraint for the optimization to be
performed, GA has been designated as the paradigm of choice.

The proposed approach consists in a series of scripts written in MATLAB and compatible
with MATLAB’s Global Optimization Toolbox, which includes GA for both single and multi-
objective optimization. As input parameters the routine accepts:

• The number of microphones in the array;

• The array design: the microphones may be organized in a single or double layer distribu-
tion, meaning that the microphones will be distributed on concentric surfaces. Otherwise
a more general distribution is accepted, where the microphones are distributed in-between
the layers;

• Design frequencies: the low-frequency limit of the array determines its size. Two mi-
crophones are enforced to be installed at a distance equal to the diameter. Wavelengths
smaller than the smallest wavelength of interest (high-frequency limit) are not important.
Its size determines the shortest possible separation between microphones. These condi-
tions are set as a non-linear constraint on the fitness criteria.

Figure 4 describes the block diagram representing the optimization. As GA is a paradigm for
function minimization, instead of maximizing the non-negative Equations 9 and 11, the scripts

1Aggregation: once dominant solutions are merged into one solution, hence a non-dominant solution. Dominant
solutions are solutions for which the improvement of one fitness function can not be achieved without the
degradation of the other.
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seek to minimize the opposite of those. In this paper, for convenience, the absolute value of the
criterion will be assumed for discussion.

In a single-objective optimization the optimized distribution is obtained immediately after the
convergence. In non-aggregative multi-objective optimization, dominant (rank 1) solutions are
used to construct a tradeoff surface (commonly known as the Pareto front) at each iteration: the
final solution can be finally obtained from a compromise between both fitness criteria (Equa-
tions 9 and 11). While compromising design objectives is a tricky task for some optimization
problems, it was observed that the Pareto front of the optimized array is often convex, justifying
the choice of the non-aggregative GA method in this work.

4 NUMERICAL RESULTS

4.1 Array optimization

In order to validate the optimization routine and the assumptions of this work, a spherical single-
layer microphone array is considered as reference. The array is 0.4 m in diameter and has 25
microphones regularly spaced at 5 azimuth and elevation directions, as seen from the micro-
phone distribution in Figure 8.a.

The same array was optimized according to the criteria of Equations 9 and 11 respectively
named ‘Orientations Criterion’ and ‘Distances Criterion’ and also for the ‘Multi-Objective Cri-
terion’ considering the simultaneous optimization of both criteria. A non-linear-constraint
defining a minimal distance of 0.04 m between microphones was imposed, as wavelengths
smaller than this value are not of interest. An initial population at least 8 times larger than the
number of variables was used, securing a sufficient diversity along the optimization. The initial
solution-set was composed of randomly distributed arrays and the reference array. The stop-
ping criterion was the relative change in the fitness function over generations, known as ‘stall
generations’. Hence, no limitation was imposed in terms of computational time. Figure 8.b to
d show the microphone distribution of each optimization case.

Trial optimizations were performed to verify the convergence of the fitness criteria to target
values with acceptable deviation (Figure 5) and the best obtained results were chosen for ana-
lyze. It was observed that all criteria do not result in an unique geometrical solution: in general
the microphone distributions vary from one trial optimization to another for the same criterion.
However the values of the fitness criteria after convergence remain relatively constant. Also, it
can be seen on Figure 5.a,b that the optimal solution in terms of microphone pair orientation
is slightly sub-optimal in terms of microphone pair separation, and vice-versa. Compared to
optimal solutions for either separation or orientation, the regular array shows poor values of the
fitness function.

For the presented cases, Figure 6.a depicts in ascending order the separation and the dif-
ference of separation of a given pair of microphones to the pair of nearest separation. The
summation of the differences of separation over all available pairs of microphones results in the
‘Distances Criterion’ of the array. In the case of a regular spaced array, it is pertinent to note that
the separation curve follows a step-shape: for a given pair of microphones, a similar pair with
same separation is always available and results in a ‘Distances Criterion’ of 0. For the same
array, microphones pairs of small separation (between 0− 0.1 m, 0.12− 0.2 m and 0.22− 0.3
m) are rare while, for any of the proposed optimized arrays, a broad distribution of separations
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Figure 5: Repeatability analysis performed with a set of trial optimizations. (a) Distances
Optimization. (b) Orientation Optimization. For each case, the best trial obtained is
identified with an ellipse.

between 0.04−0.4 m is noticed.
In a similar fashion Figure 6.b depicts the orientation relative to an arbitrary direction and

the angular separation of each pair of microphones. The summation of the angular separation
results in the ‘Orientations Criterion’ of the array. It is noticed that the optimized cases present
a strictly increasing angular separation between pairs of microphones. In contrast, the regular
spaced array presents a redundancy in terms of microphones pairs orientations, with several
microphones presenting the same orientation.

In the multi-objective problem an estimation of the Pareto Front is calculated from the linear
regression of the statistical data obtained from the single-objective optimizations (Figure 7).
It becomes evident that both fitness criteria are somehow coupled: since the separation in the
design space between both single-objective optimization solutions is small, optimizing the array
for one criteria is almost equivalent to optimizing the array for the another. This is confirmed
in the multi-objective optimization: as little space is left for trade-off decisions on the Pareto
Front, the multi-objective solution is close to the the single-objective solutions in the design
space .

The previous findings are confirmed when the noise source maps of the respective arrays
are evaluated with the GCC-PHAT. A numerical simulation was carried with a 94 dB (SPL)
broadband monopole source at φ = θ = 0◦ (Figure 8). The regular array shows strong side-lobe
lines converging vertically, horizontally and with a circular pattern (Figure 8.a). In the case of
the optimized arrays, a systematic side-lobe suppression was observed: the source map intensity
decreases omnidirectionally from the source location. This observation may be perceived as a
strong evidence of the proposed ‘spatial whitening’ mechanism.

4.2 Sources with different pressure levels

A numerical simulation was carried to evaluate the performances of different arrays in the case
of source localization of sources with different pressure levels. A regular array as the one from
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Figure 6: (a) Separation and difference of separation for each pair of microphone. The ‘Dis-
tances Criterion’ is obtained from the integration of the dashed curve. (b) Orientation
and angular separation for each pair of microphone. The ‘Orientations Criterion’ is
obtained from the integration of the dashed curve.

Figure 8.a was compared to an optimal array in terms of the ‘Distance Criterion’ (Figure 8.b).
A set of 9 broadband monopoles (5 at 94 dB and 4 at 86 dB) was distributed in the space.

The simulation results are presented in Figure 9. From top-left to bottom-right the sources
are localized alternately, starting with one of the source of lowest level. A qualitative analysis of
the noise source maps reveals the expected tendency for this simulation: while the regular array
provides a poor source map with main side-lobe lines and side-lobe intersections characteriz-
ing false-positives (Figure 9.a), the optimized kept the expected tendency of omnidirectionally
suppressing side-lobes (Figure 9.b).

5 CONCLUSIONS

This study was able to numerically demonstrate the expected tendencies related to side-lobe
rejection using specific geometric criteria for the distribution of microphones in an array. First,
it was shown that, for a sphere, the optimization criteria based on the maximization of the sum
of difference of distances and orientations between microphones pairs are similar in the design
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Figure 7: Estimated Pareto front for the multi-objective optimization. Best trial identified with
an ellipse.

Figure 8: Microphones distributions and noise source map obtained with a numerical simula-
tion of GCC-PHAT. Microphones positions illustrated by black dots. A broadband
monopole is located in φ = θ = 0◦, at 5 m from the array. From (a) to (d) (best solu-
tions obtained): regular array, ‘Distances Criterion’ array, ‘Orientations Criterion’
array and ‘Multi-Objective Criterion’ array.
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Figure 9: (a) Source localization of a regularly spaced array. (b) Source localization of an op-
timized array (‘Distances Criterion’). Sources are conveniently identified by dashed-
circles. Simulation performed with GCC-PHAT with sources 5 m away from the array.

space. Both solutions allow the suppression of side-lobes on the noise source maps obtained
with the GCC-PHAT by the so-described mechanism of ‘spatial whitening’. The obtained noise
source map is smoother and improves the localization of sources with different levels, compared
to a regularly spaced array. It was demonstrated that an optimization methodology based on ge-
netic algorithms is computationally feasible and sufficiently flexible to accommodate different
applications requirements. Future developments are proposed in sequence: validation of nu-
merical results with similar experimental set-ups, development of specific metrics to accurately
quantify the array’s performances in terms of source localization and finally, validation of the
optimization criteria for arrays of different sizes, shapes and applications.
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