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ABSTRACT 

In this paper, the mathematical equivalence between beamformer algorithms and a 

spatial transform of the field data collected by the array elements is explored.  A proof is 

presented which illustrates the equivalence.  When applied to the classic delay and sum 

beamformer, or a pure phase in the frequency domain, the result relates this beamformer 

to the two-dimensional Fourier transform of the array data.  This places the connection 

between beamformer and imaging on firm theoretical ground.  The equivalence also 

suggests algorithmic enhancements that can help in producing better images, and produce 

optimized approaches to signal processing.  These enhancements are dependent on the 

additional preprocessing of raw data that is required to capture pulsed data, and isolate 

specific frequency bins.  Specific cases applied to simulated data along with a cost 

analysis for estimating the processing load are presented. 

1 INTRODUCTION 

     The connection between a far field, or DAS, beamformer and a discrete Fourier transform 

(DFT) has been noted and used in sonar signal processing algorithms.  The realization is fairly 

straight forward, having been used by Weber and Heisler to develop high performance 

algorithms used in towed linear arrays of equally spaced elements [1].  This presentation is 

unique in that it presents a derivation that takes a slightly different approach than identifying 

DAS with DFT.  The connection presented here does not assume a specific form of the 

weights, uses a continuum approach, and in theory applies to a broader class of beamformer 

algorithms.  For the purpose of physical motivation, beamforming and signal processing 

involved in locating multiple sources and targets in the far field of the array is considered.  

The array may be active of passive, this has no bearing on the main result but may introduce 

additional signal processing steps to single out a specific frequency of interest in a pulse echo.  

The beamformer algorithm is expressed in the frequency domain and narrow band signals are 

assumed as a starting point.  The array is assumed to be a planar array of identical, ideal, 
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sensors.  The beamformer weights are functions of a set of scan-grid parameters, see Fig. 1.  

The following variables are defined: 

 

Indices  𝑛 or  𝑚 = 1, … , N are used to label the sensors in the array. 

 

Indices  (𝑖, 𝑗)  or   (𝑖′, 𝑗′) are used to label coordinates in the array face. 

 

𝑟′ = (𝑥′, 𝑦′)   2-D Cartesian coordinates in the plane of the array face. 

 

𝑟𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) Scan-grid coordinates location of the k-th grid point. 

 

𝑟⊥𝑘 = (𝑥𝑘, 𝑦𝑘)   

 

𝑟𝑘 = |𝑟𝑘|  Distance to the k-th grid point. 

 

(𝜃𝑥, 𝜃𝑦, 𝑟)  Angular coordinates for a shell of radius r centered at the array. 

 

𝑤𝑚(𝑟) or  𝑤(𝑟, 𝑟′)  Beamformer weights. 

 

𝑢𝑚(𝑡)   Time series data in sensor m. 

 

𝑢(𝑟′, 𝑡)   Time series data in sensor m, expressed in array face coordinates. 

 

𝑓𝑐     Carrier frequency. 

 

𝑘𝑐    Wave number associated with the carrier frequency. 

 

 

Array

                

Figure 1 – Array and scan grid in R3 
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2 THEORY 

2.1 The generic beamformer 

     The starting point is the expression for a standard beamformer, Eq. (1).  A set of sampled 

array data {𝑢𝑘(𝑡)} is projected onto a set of weights and the result summed.  Weights are 

chosen to represent a source at bearing {𝜃𝑥, 𝜃𝑦} [2].  The squared magnitude to the 

summation, often referred to as the beam power, can be thought of as representing the 

likelihood that the data measured by the array is due to a source at {𝜃𝑥, 𝜃𝑦} when properly 

normalized.  The data may already be passed through a filter to single out a specific frequency 

bin and one typically takes the time average over several samples over a time interval 𝑇.   

 

𝑏(𝑟𝑘) = ∑ ∑ 𝑤𝑚
∗ (𝑟𝑘) {

1

𝑇
∫ 𝑢𝑚(𝑡)𝑢𝑛

∗ (𝑡)𝑑𝑡} 𝑤𝑛(𝑟𝑘)

𝑁

𝑚=1

𝑁

𝑛=1

=
1

𝑇
∫ 𝑑𝑡 |∑ 𝑤𝑚

∗ (𝑟𝑘)𝑢𝑚(𝑡)

𝑁

𝑛=1

|

2

  (1) 

 

In Eq. (1) m, n indices go from 1 to N, the number of array elements.  This index scheme does 

not allude to any geometric placement of the array elements.  The discrete sums inside the 

integral of the second equal sign may be defined such that the summation is over discrete 

coordinates in the face of the array. 

 

∑ 𝑤𝑚
∗ (𝑟𝑘)𝑢𝑚(𝑡)

𝑁

𝑛=1

= ∑ 𝑤𝑤(𝑖,𝑗)
∗ (𝑟𝑘)𝑢(𝑖,𝑗)(𝑡)

(𝑖,𝑗)

= ∑ 𝑤∗(𝑥𝑖
′, 𝑦𝑗

′, 𝑟𝑘)𝑢(𝑥𝑖
′, 𝑦𝑗

′, 𝑡)
(𝑖,𝑗)

 (2) 

 

The limits of the sum are suppressed in Eq. (2), their meaning is defined in Fig. 2.  

     A few points regarding the beamformer expression(s) in Eq. (1) are mentioned.  First, the 

quantity in brackets in the first equality is the cross spectral density matrix, CSDM or CSM 

[2,3]. 

 

𝐴𝑚𝑛 =
1

𝑇
∫ 𝑢𝑚(𝑡)𝑢𝑛

∗ (𝑡)𝑑𝑡  (3) 

Thus, another expression for the beamformer, Eq. (1), is ⟨𝑤|𝐴𝑤⟩ = 𝑤𝑚
∗ 𝐴𝑚𝑛𝑤𝑛, summation 

implied.  An interpretation of this is the expectation value of the CSDM operator in the basis 
|𝑤⟩.  The second point is that the beamformer weights are normalized such that ⟨𝑤|𝑤⟩ =
𝑤𝑛

∗𝑤𝑛 = 1.  In the case of the delay and sum beamformer, DAS, this achieved by dividing the 

weights by √𝑁.  For the following this factor is carried explicitly, defining |𝑤⟩ = |𝑊⟩/√𝑁.  

When |𝑊⟩ is a pure phase, this is sufficient to normalize the weights.  In more general cases 

where windowing functions are applied additional normalization factors may be required.  

These are assumed to be included in |𝑊⟩.  The uniformly spaced sample points, i.e. sensor 

locations, are separated by ∆𝑥, ∆𝑦, which are assumed equal, ∆𝑥, = ∆𝑦= ∆. 

     Taking the limit as ∆→ 0 while 𝑁 → ∞, keeping √𝑁∆= 𝐿 constant, the double sum goes 

to an integral. 
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∑ 𝑤∗(𝑥𝑖
′, 𝑦𝑗

′, 𝑟𝑘)𝑢(𝑥𝑖
′, 𝑦𝑗

′, 𝑡)
(𝑖,𝑗)

→
1

𝐴
∫ 𝑑𝑥′𝑑𝑦′𝑊∗(𝑟′, 𝑟𝑘)𝑢(𝑟′, 𝑡) (4) 

 

   

 

 

In Eq. (4) the area of the array aperture is introduced, 𝐴 = (𝑁∆)2.  The integral in Eq. (4) is a 

generalized transform written in compact form in Eq. (5). 

 

𝜓(𝑢)(𝑟𝑘 , 𝑡) = ∫ 𝑑𝑥′𝑑𝑦′𝑤∗(𝑟′, 𝑟𝑘)𝑢(𝑟′, 𝑡) (5) 

 

The transformation in Eq. (5) takes u from array face variables (𝑥𝑖
′ , 𝑦𝑗

′ ) into scan-grid 

variables (𝜃𝑥, 𝜃𝑦), for now 𝑡 goes along for the ride.  Equation (1) may now be expressed in 

terms of this transform. 

 

𝑏(𝑟𝑘) =
1

𝑇
∫ 𝑑𝑡|𝜓(𝑢)(𝑟𝑘, 𝑡)|2 (6) 

 

The beam former algorithm may now be described by the following steps. 

 

1. The data across the array face, 𝑟′, is transformed into a new function in 𝑟𝑘 for each time, 𝑡,  

𝜓(𝑢)(𝑟, 𝑡). 

 

x

y

Sensor Index 

m =    1         2         3

m = N

       

𝑥𝑖 , 𝑦𝑗

Figure 2 – Array sensor coordinates and their relation to sensor index 
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2. The squared magnitude of each of these transforms is constructed, 𝑏(𝑟𝑘, 𝑡) = 𝜓∗(𝑢)𝜓(𝑢). 

 

3. The quantity in step 2 is integrated over the block of time 𝑇, forming a time averaged 

transform,  𝑏(𝑟𝑘) = 𝑇−1 ∫ 𝑏(𝑟𝑘, 𝑡)𝑑𝑡. 

 

From these steps it is clear that the output of the beamformer is equivalent to a time average 

of the square amplitude of the spatial transform from array face coordinates to scan-grid 

coordinates. 

     It should be mentioned that the integral in Eq. (5) has finite limits, e.g. [−𝐿/2, 𝐿/2].  In 

passing to the continuum limit the data sample can be considered as a function defined on a 

finite region of 𝑅2, and the domain of the weights taken to be all of 𝑅2.   

 

2.2 Far-field Green’s function and Fourier transform 

     To make contact with the DAS beamformer one can simply choose the weights to be pure 

phase.  The same resul      be  e  ve  u      he G ee ’  fu           he we  h        k     he 

far field limit.  This approach demonstrates a direct connection between the choice of weights 

and the propagator from source to array sensor.  The standard beam former uses the 

prop          G ee ’  fu       f             u  e l    e                𝑟𝑘 for the weights. 

 

𝑤(𝑟′, 𝑟) = 𝐴0

exp 𝑖𝑘𝑐|𝑟 − 𝑟′|

|𝑟 − 𝑟′|
 (7) 

 

For brevity the amplitude and phase functions are defined, 𝐴(𝑟′, 𝑟) ≡ 𝐴0/|𝑟 − 𝑟′| and 

𝑓(𝑟′, 𝑟) ≡ |𝑟 − 𝑟′|.  For this choice Eq. (5) becomes, 

 

𝜓(𝑢)(𝑟, 𝑡) ~ ∫ 𝑑𝑥′𝑑𝑦′𝑢(𝑟′, 𝑡)𝐴(𝑟′, 𝑟)𝑒−𝑖𝑘𝑐𝑓(𝑟′,𝑟) (8) 

 

Taking the far-field limit, the phase and amplitude functions are approximated, 𝑓(𝑟′, 𝑟) ≈
𝑟𝑘{1 − 𝑟𝑘

−2𝑟′ ∙ 𝑟⊥𝑘}, and (𝑟′, 𝑟) ≈ 𝐴0/𝑟𝑘.  The transform may be written as follows. 

 

𝜓(𝑢) ~𝐴0

𝑒𝑖𝑘𝑐𝑟𝑘

𝑟𝑘
∫ 𝑑𝑥′𝑑𝑦′𝑢(𝑟′, 𝑡)𝑒𝑖𝑘𝑐𝑟′∙𝑟⊥𝑘/𝑟𝑘 (9) 

 

Equation (9) is recognized as the Fraunhofer diffraction integral (or its inverse depending on 

convention) with 𝑢(𝑟′, 𝑡) as a source term.  A pure phase weight in the frequency domain 

equivalent to the delay and sum beamformer, hence the transform may be identified with the 

2-dim Fourier transform of the data at instant t. 

     This section closes with some comments on the DAS beamformer in the continuum limit.  

The previous section closed with the statement that the weights could be extended to all of 𝑅2 

and the data defined on a finite patch.  In the case of the pure phase weights this allows one to 

identify the weights with a complete orthonormal set of functions and make use of the 

completeness relation.  
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3 PRACTICAL CONSIDERATIONS 

3.1 FT versus FFT 

Recognizing the pure phase beamformer as a spatial Fourier transform (FT) motivates one 

to consider using the FFT to produce beamformer results for each instant of collected data, or 

each time for which filtered data is procured.  While the FFT is fast, there are limitations 

imposed by the structure of this algorithm that may compete with other interests.  This needs 

to be addressed on a case by case basis.   

3.2 Resolution 

Identifying Eq. (9) with a 2dim FFT the transform variables are as follows.  

 

(𝑥′, 𝑦′) → 𝜆−1(sin 𝜃𝑥 , sin 𝜃𝑦) (10) 

 

Limits and sampling resolution of sin 𝜃𝑥,𝑦 are determined by the sampling resolution and 

limits of (𝑥′, 𝑦′).  The beamformer can be evaluated for any choice of sin 𝜃𝑥,𝑦 and is not 

necessarily limited by the sampling of the field by the array face.  However, the use of the 

FFT algorithm to evaluate 𝜓(𝑢) will only give N transformed quantities for N data points.  

This does not mean that the output is restricted to only N values.  For a discrete set of input 

data, the FT still provides a continuum of values.  Given the discrete FT of a data sample 
{𝑢𝑘}, 𝑘 = 1, … , 𝑁, with sampling period ∆ the FT of {𝑢𝑘} is,  

 

𝑈(𝑓𝑛) = ∆ ∑ 𝑢𝑘𝑒𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0

 

 

(11) 

Now consider 𝑈(𝑓𝑛 + 𝛿), 

 

𝑈(𝑓𝑛 + 𝛿) = ∆ ∑[𝑢𝑘𝑒𝑖2𝜋𝑘∆𝛿]𝑒𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0

 

 

(12) 

The final equality is recognized as the FT of a phase modulated data set {𝑢𝑘𝑒𝑖2𝜋𝑘∆𝛿}.  It 

should be noted that this procedure will generate any frequency bin of the discretely sampled 

data, which may be thought of as the convolution of the continuous field with a comb 

function.  This will not generate the complete spectra of the original field.  Once this is 

identified as an FT of a new data set the FFT can be applied to the phase modulated data to 

generate as much of the spectrum of the discrete function {𝑢𝑘} as desired.  This also holds for 

the spatial FFT applied to array face data.  Since the beamformer does not presume a scan-

grid resolution one is free to make the grid as dense or sparse as desired.  The take away from 

this is that by application of phase shifts to data one can increase the scan grid sampling by 

use of the FFT approach on multiple copies of the array face data.  This will not improve 

target resolution.  Equations 11 and 12 illustrate interpolation in the time – frequency variable 

pair.  To apply this to the array data requires a spatial phase shift applied to the data. 
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𝑈(𝑥⃑′ + 𝛿) = 𝐹𝐹𝑇(𝑒𝑖𝑘𝑐 𝛿⃑⃑⃑∙𝑥⃑𝑢(𝑥⃑)) (13) 

 

One does not need to perform this transform once for each desired point.  For example, to 

increase the scan grid resolution in each direction by a factor of 2 the shift only needs to 

performed 3 times, once in each direction and once along a 45 degree diagonal. Figure 3 

illustrates this.  The large black crosses mark the location of the grid points without shift.  The 

light blue crosses mark grid points obtained from the output for a shift in the x and y 

directions by 1/2 the original grid spacing, the diagonal shift is omitted to keep the figure 

legible.  

 

 

 

The desire to increase the grid density by phase shifted data is motivated by the desire to 

make use of the FFT in developing the instantaneous images.  This is a matter of choice.  Zero 

padding is another approach to effectively increasing the scan grid resolution.  In this 

paradigm, apply spatial windowing functions and zero padding can be applied to the array 

data to reduce side lobe levels and increase resolution of the scan grid.  The effect of these 

signal processing considerations is illustrated in Figs. 4 and 5 below.  Figure 4 shows the 

output of the standard DAS beam former for an array designed for a maximum frequency of 

2200Hz acoustic signal in air (c = 343m/s).  There are two targets (or sources) at 𝜃 = ±150.  

The array is 3m-by-3m with 40 elements along each direction, a total of 1600 elements with 

spacing of ~7.7cm.   

x

y

Data points

Interpolated 

points

𝛿𝑥

𝛿𝑦

   

Figure 3 – Increasing grid density by phased FFT 
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The scan grid is 200-by-200 sampled from sin 𝜃 ∈ [−0.5, 0.5] in each direction.  In Fig. 5 two 

examples of the FFT method are illustrated.  The first, on the left, is an FFT of the array data 

with no additional signal processing methods applied.  One can see that the two targets are 

clearly defined at the correct bearing angles but the images is coarse.  The right panel of Fig. 

5 is the result of the FFT applied to the array data zero padded out to 256-by-256 data points 

and with a smoothing window applied, cos(𝜋𝑥/𝐿) cos(𝜋𝑦/𝐿).  Since the array is sampled to 

Nyquist for the frequency considered the FFT provides data out to sin 𝜃 = ±1.  Sidelobe 

suppression relative to the main peak is clear in this example.  The effect of smoothing the 

FFT of array data – no zero padding FFT of array data – with zero padding and window

Figure 4 – Sample DAS beamformer for two targets 

Figure 5 – Example FFT processing for example in Fig. 4, without padding (left) and with padding and 

windowing functions applied (right)  
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data does not increase the target resolution, which is determined by the Rayleigh criterion, 

~λ/𝐿.  The signal processing methods merely enhance the output.     

 

3.3 Missing elements and irregular arrays 

     The relationship between the beamformer and spatial transform made use of regularly 

spaced array elements.  In fact, the standard approach to FFT requires evenly spaced sample 

data.  It is often the case that evenly sampled data has missing data or that application of a 

higher order algorithm produces irregularly spaced effective elements.  Independently of this, 

optimal array design often leads to irregular element spacing or placement along geometries 

that do not fit into a rectangular grid [2].  In such cases it is still possible to make use of the 

FFT for imaging targets by use of non-uniform FFT algorithms [4,5]. 

 

3.4 Complexity 

     The complexity of the various approaches to evaluating the beamformer are compared.  

Three approaches are considered in the limit of large number of elements and scan grid 

points.  Overall factors and cost of primitive operations is scaled to 1 in big O notation.  The 

first implementation is the expectation value of the CSDM for each scan grid point, ⟨𝑤|𝐴𝑤⟩.  
Building the CSDM, 𝐴𝑛𝑚, requires taking 𝑁2 multiplications taken K times then averaged 

over the K time samples for a total of 𝑂(𝑁2𝐾) operations.  Next is the operation of a matrix 

times a vector, followed by the inner product of two vectors, performed for each scan grid 

point.  This is total of 𝑂(𝑁2𝑀) + 𝑂(𝑁𝑀) operations.  Assuming large values for N and M, 

~𝑂(𝑁2(𝑀 + 𝐾)).  Operations such as conjugation etc. have been ignored.  Changing the 

order of operations consider taking the inner product of the weight and data vectors over the 

array face, i.e. ⟨𝑤|𝑢⟩.  This is an 𝑂(𝑁) operation.  This is done for each grid point and each 

time for a total of, 𝑂(𝑁𝑀𝐾).  Taking the magnitude of each scalar and summing over K for 

each M is ~𝑂(𝑀𝐾).  Last, consider the 2dim FFT for evaluating the beamformer.  This is an 

𝑂(𝑁 log2 𝑁) operation.  Done K times and summed, ~𝑂(𝐾𝑁 log2 𝑁) + 𝑂(𝑁𝐾).  For large N 

and M, with 𝑀 = 𝑁, and a single time evaluation, the ratio of the three methods is 

approximately 𝑁3: 𝑁2: 𝑁 log2 𝑁.  The analysis implies that the time average of |⟨𝑤|𝑢⟩|2 is a 

better option than evaluating ⟨𝑤|𝐴𝑤⟩.  This depend on other factors.  Methods for reducing 

noise rely on either eliminating terms in the CSDM or an eigenvalue analysis of the CSDM 

requiring a fully developed matrix before beamforming.  On the other hand, detection of 

narrow band signals in active sonar systems under relatively noise free environments are ideal 

candidates for the other two procedures.     

 

4 EXTENSSIONS 

4.1 T-A-P and co-array 

Two common extensions of the standard beamforming algorithm are the time-averaged-

product array, or T-A-P, and the co-array.  The T-A-P makes use of time averaged product of 

the sensor data to generate array processing output.  It has been shown that the effect of such 

algorithms is equivalent to a sum array for a larger number of elements [6,7].  Recent work in 

this area suggests applying the standard beamformer to the product array outputs [8].  Figure 
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4 is an example 5-by-5 array along with the product array or co-array generated by the 

original 5-by-5 array.  For this case both the T-A-P and co-array contain the original array 

elements. 

 

 

 

A co-array is generated by taking all differences in array element location.  T-A-P array 

processing involves taking the time averaged product between pairs of elements and passing 

these quantities through a summation.  Consequently, there are a wide variety of T-A-P 

processing choices for a given set of inputs.  These are divided into classes; the reader being 

referred to reference [6] for details on class definitions.  As illustrated in Fig. 6, the effect of 

such algorithms is to increase the effective array aperture size.  For the case provided here, the 

larger array contains the original elements as a subset but such algorithms can result in 

irregular array element spacing.  Figures 7 and 8 below show example output from a physical 

array, of size 𝐿 × 𝐿, and T-A-P processing of a smaller array, 𝐿/2 × 𝐿/2.  There are two 

identical sources present, each with 𝑓 = 2200Hz, placed at ±5°.  The element spacing is 

chosen to produce a critical angle of 𝜃𝑐 ± 30°, or sin 𝜃𝑐 = ±0.5.  In both cases the sampled 

data was zero padded to 128-by-128 and the images generated by 2-dim FFT, rather than 

direct application of the DAS beamformer. 

Co-array or T-A-P elementsOriginal array elements

Original elements

embedded in larger array

Figure 6 – Sample physical array and equivalent array generated by T-A-P or co-array process 
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The two-dimensional surface plot in Fig. 7 is of the amplitude of the image normalized by the 

largest value, e.g. colour scale maps to [0, 1].  Figure 8 is a cross section of the surface plot 

through the centre line on a log scale.  A few features are worth mentioning.  First is that the 

T-A-P processing maxima are at ±5.2°, while the direct result has maxima at ±4.3°.  The T-

A-P processing involves only 25% as much input data as the direct case, at the cost of a more 

complex processing flow.  The T-A-P result contains slightly larger sidelobes, and a more 

3m by 3m array 1.5m by 1.5m array with TAP processing

Figure 7 – FFT of array data (left) and TAP generated data from smaller array (right) 

Figure 8 – TAP versus direct array processing for example in Fig. 8 
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complex structure.  There exists more than one approach to defining the inputs generated by 

T-A-P processing.  In this case all products correlating to a given effective element location 

are summed.  This approach produces a natural windowing function. 

 

4.2 Non-linear beamformers 

     A wide class of high resolution beamformers, also known as inverse beamformers or 

nonlinear beamformers, exist that give rise to better resolution of targets for a fixed array 

geometry as compared to DAS [3, 9,10,11,12,13].  These beamformers involve the use of the 

inverse of the cross spectral density matrix, rather than the direct CSDM.  Such beamformers 

require the complete CSDM for the array data before the weights are generated or pre-steering 

applied.  Another way to think of these beamformers is that the weights are data dependent.  

The approach taken in section 2 assumes that the weights are independent of the data, forming 

a basis for a function space in which the data is projected.  Consequently, these types of 

beamformers do not map to the FFT algorithm as the DAS.  Consider the form of the MEM 

beamformer [3], MEM−1 = ⟨𝑤|𝐴−1|𝑤⟩.  Using a series expansion of the inverse matrix 

(provided it exists) allows this to be written,  

 

∑ ∑ (
𝑛
𝑘

) (−1)𝑘⟨𝑤|𝐴𝑘|𝑤⟩

𝑛

𝑘=0

∞

𝑛=0

 (13) 

 

Provided that the expansion can be applied, the individual terms may be expressed in terms of 

the image projected on the array.  This can be illustrated either in the original discrete sum or 

in the continuum limit.  The time averaging in the definition of 𝐴 will need to be considered 

carefully.  As an explicit example consider the second order term.  

 

𝑤𝑛
∗𝐴𝑛𝑙

2 𝑤𝑙 = 𝑤𝑛
∗𝐴𝑛𝑚𝐴𝑚𝑙𝑤𝑙 =

1

𝑇

1

𝑇
𝑤𝑛

∗ {∫ 𝑢𝑛(𝑡)𝑢𝑚
∗ (𝑡)𝑑𝑡

𝑇

0

∫ 𝑢𝑚(𝑡′)𝑢𝑙
∗(𝑡′)𝑑𝑡′

𝑇

0

} 𝑤𝑙

=
1

𝑇2
∫ 𝑑𝑡𝑑𝑡′{𝑤𝑛

∗𝑢𝑛(𝑡)}{𝑢𝑚
∗ (𝑡)𝑢𝑚(𝑡′)}{𝑢𝑙

∗(𝑡′)𝑤𝑙}

𝑇

0

=
1

𝑇2
∫ ∫ 𝑑𝑡𝑑𝑡′𝑇(𝑢(𝑡)){𝑢𝑚

∗ (𝑡)𝑢𝑚(𝑡′)}𝑇∗(𝑢(𝑡))

𝑇

0

𝑇

0

 

 

Expressed in terms of a discrete time sampling,  

 

𝑤𝑛
∗𝐴𝑛𝑙

2 𝑤𝑙 =
1

𝑇2
𝑇𝑖(𝑢)𝑀𝑖𝑗𝑇𝑗

∗(𝑢) (14) 

 

Since 𝑇 is used as the sampling interval and the image operator, the argument (𝑢) is retained 

to avoid confusion.  The new matrix 𝑀𝑖𝑗 is constructed by taking sum over all array elements 

of every pair of time samples in the window 𝑇.  Higher order terms are fairly straight forward,  
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𝑤𝑛
∗𝐴𝑛𝑙

𝑘 𝑤𝑙 =
1

𝑇𝑘
𝑇𝛼1

(𝑢)𝑀𝛼1𝛼2
𝑀𝛼2𝛼3

⋯ 𝑀𝛼(𝑘−1)𝛼𝑘
𝑇𝛼𝑘

∗ (𝑢) (15) 

 

The action of the operator, 𝑀𝑖𝑗, and comparison to the DAS beamformer, are illustrated in 

Fig. 9 and Fig. 10. 

 

  

 

 

 

The DAS beamformer takes the time average of the square image amplitude, Fig. 9.  In 

contrast, each term in the expansion of the inverse beamformer couples the images from 

different times using a weighted average over powers of the time sequence array data, Fig. 10.  

This view of the action of the inverse bam former may offer some theoretical insight but 

estimating the output of these approaches using a truncated series leads to suboptimal results. 

 

Figure 9 – Pictoral representation of the DAS beamformer 

Figure 10 – Pictoral represntation of the quadratic term in the non-linaer beamformer expansion 
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5 SUMMARY 

A connection between the classic beamformer method and spatial transform has been 

demonstrated and discussed.  The approach makes use of the continuum representation of an 

array, later identifying a discretely sampled array with DAS weights with the Fourier 

Transform.  Application of this approach to extensions of the linear beamformer were also 

considered.  For irregular spaced arrays non-uniform FFT techniques offer a possible 

extension of this technique.  Applied to non-linear and inverse beamformers show that these 

types of algorithms can be interpreted as an infinite series in the images produced at a 

sequence of times.  While this is interesting in theory it is not likely to lead to fast high-

resolution algorithms as with the linear beamformer.    
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