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ABSTRACT 

Active research is ongoing to improve the design of different parts of aircraft 
including innovative devices of noise reduction often assessed during experiments 
conducted with scaled models in wind tunnels or in situ with real aircrafts. Source 
localization methods play a fundamental role to identify the source locations which are at 
the origin of the annoyance. Another issue for these experiments is the validation of 
theoretical models, requiring a fine characterization of primary sound sources (source 
signals). The issue is to extract the primary source signals from the recorded mixtures at 
the microphone output. Blind signal separation techniques seem to be suitable to respond 
to this problem.. Bayesian source separation approach has the advantage of incorporating 
relevant information about sources and mixing systems to help the separation process. It 
is applied to tests performed in an anechoic chamber with tonal, narrow-band and 
broadband sources measured with an array of microphones. It is shown that the source 
separation results are better when sparsity priors are used rather than Gaussian ones for 
all the sources. 

 

1 INTRODUCTION  

The reduction of the flyover noise footprint generated by the aircraft is a priority for the 
civilian aeronautics industry, which in the next decade will be confronted with more 
restrictive noise regulation in urban areas. To deal with these issues, active research by engine 
manufacturers is ongoing in improving the design of inlets [1], fan [2] and compressor blades 
[3], and nozzles [4], while airframe builders are studying landing gear [5] and flap design [6].  

In order to study the efficiency of aircraft noise reduction tools the Computational Aero-
Acoustics (CAA) algorithms [7] are frequently used. CAA offers a way to obtain an 
understanding of the physics at the origin in noise generation by performing numerical 
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simulations of aeroacoustics phenomena. However, aero-acoustics problems typically involve 
a broad range of frequencies so that numerical resolution of the high-frequency waves with 
extremely short wavelengths becomes a great obstacle to accurate numerical simulation with 
CAA.  

It is also possible to use semi-empirical models [8] which are less sophisticated than 
numerical methods but has a great advantage to provide quick information on the acoustic 
behaviour of noise sources during development of a new aircraft.  

Another important step in understanding the mechanisms at the origin of the noise 
produced by aircraft concerns the experiments conducted with scaled models in the anechoic 
wind tunnels or in situ with real aircraft. In these practical situations, source localization 
methods using sensors arrays [9], [10], [11] often play a fundamental role. Another objective 
of the experiments is to allow the validation of theoretical models based on knowledge of the 
original sound sources (source signals) characteristics. In this case, the problem to be solved 
is different from the source localization, since the issue is to extract the source signals from 
the recorded mixtures at the sensor output. 

Blind Signal Separation (BSS) [12] techniques seem to be suitable to respond to the 
mentioned problem. The term blind is intended to imply that such methods can separate data 
into source signal even if very little is known about the nature of those source signals. 
Independent Component Analysis (ICA) [12] belongs to a class of blind source separation 
(BSS) methods for separating data into underlying informational components, where such 
data can take the form of images, sounds, or telecommunication channels.  

ICA assumes that the observations are instantaneous linear combinations of the source 
signals and that the sources are pairwise statistically independent. The mixing matrix is 
supposed to be invertible which gives the possibility to define a separating matrix. 

ICA methods then try to find this separation matrix which will be near to the inverse of the 
mixing matrix up to a permutation and a scaling ambiguity. Despite success of ICA in 
separation with simulated signals or in application such as electrocardiogram, image 
separation, it is problematic when applied to acoustic source separation because the mixing 
system is not simply instantaneous, but convolutive and sometimes with interferences caused 
by the reflections of the primary sources. Furthermore, the unobserved source components 
can be correlated, sparse or positive. This leads naturally to the idea of Informed Source 
Separation (ISS), where the algorithm design based on Bayesian approach which allows 
incorporating relevant information about sources and the mixing matrix [13]. This approach is 
adopted in the present.  

In this study, we address Bayesian separation using simulated and experimental data 
involving three sound sources, which are mixed pairwise on an array of microphones. The 
first source is monochromatic; the second one has a narrow-band and the third one a 
broadband. The main objective of this paper is to explore sparse prior distribution to perform 
the separation of the primary source Power spectral densities based on Bayesian approach 
with sparsity enforcing priors[14].  

 
The paper is organized as follows. Section 2 introduces briefly the mixtures and the separation 
models for instantaneous and convolutive applications. Bayesian source separation approach 
is detailed in Section 3 and in Section 4 Joint Maximum A Posteriori (JMAP) uses for solving 
the source separation problem.  Section 5 presents the experiment carried out with load-
speakers, which is used to evaluate the efficiency of the proposed Bayesian source separation 
method. Section 6 describes tests performed with real observations mixed artificially and their 
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statistical and spectral analysis. The priors for the mixing matrix, the acoustic sources and the 
likelihood considered to solve the separation problem are detailed in Section 7. JMAP 
solutions for the data analysis concerning the experiment described in the paper are presented 
in Section 8 and in Section 9 the separation solution for the experimental data. These 
experiment demonstrated that the proposed method is applicable to real world problems of 
source separation. 

2 MIXTURE AND SEPARATION MODELS 

The difficulty of the blind source separation task strongly depends on the way in which the 
signals are mixed within the physical environment. The simplest mixing scenario is termed 
instantaneous mixing [15], for which most early BSS algorithms were designed. However, 
real-world acoustical paths lead to convolutive mixing [16] of the sources when measured at 
the acoustic sensor locations, and the degree of mixing is significant when propagation 
medium is not anechoic. Both kinds of model are briefly presented in the following. 

2.1 Instantaneous Model and ICA 

One considers the mixing and filtering processes of the unknown input sources 
 �����, �� = 1,2, … ,�� that may have different physical models, depending on specific 
applications. In the simplest case,  mixed signals �����, �� = 1, 2, … ,� are assumed to 
be linear combinations of the � (typically  ≥ �) unknown source signals ����� [17]:  
 

����� = ���,������ + �����; 	�� = 1,2, … ,��
���  

 
(1) 

 
 

or in matrix form: 
 ���� = ����� +  ��� (2) 
 

where ���� = [����� … �"���]$ is a vector of microphone signals,	���� = [�����… �����]$   
is a vector of sources,  ��� = [�����… �"���]$ is a vector of additive noise, and � is an 
unknown full rank  ×� mixing matrix containing the coefficients 
 ��,�, � = 1	�&	; � = 1	�&	� of the linear time invariant system characterizing the transfer 
from the sources to the observations. Thus, it is assumed that the signals received by the array 
of microphones are weighted sums (linear mixtures) of primary sources.  

The objective of blind source separation is to find an inverse system in order to estimate 
the primary source signals, ����. This estimation is performed on a vector 
 '��� = [(����…(����]$ where '��� is a linear combinations of the microphone signals ����. 
Basically, for linear instantaneous mixtures, )*+  methods aim at estimating a demixing 
matrix , yielding estimated sources '��� = [(���� …(����]$ (Fig.1). 
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Fig.1. Block diagram of the instantaneous BSS task. 
 

The majority of research efforts for estimating , have been devoted to the noiseless case, 
where  ��� = -. Thus, it is not too difficult to show, if � is inversible ,. = �/0, then '��� = ,.���� = ,.����� = ����. The output independence for '��� leads to a matrix , that 
satisfies ,� = 12, where 1 is a permutation matrix and 2 a scale matrix [17]. The estimated '��� are equal to the primary sources ����, up to a permutation and a scale. A convenient 
criterion of independence is the Kullback-Leibler 34 divergence [18]:  

  

34 567�'�,8679�(��
�

���
: � ; 67<= �'�>&? @ 67�'�∏ 679�(������ BC' (3) 

 
The divergence 34 has the property to be null only when the variables D(�E����  are 

statistically independent. This allows obtaining an estimate for ,	 as follows: 
 

FG � �H?max, 34 L567�'�,8679
�

���
�(��:M (4) 

 
The estimation of a separating matrix , in the presence of noise is rather difficult. The 

effect of incident noise fields impinging on  microphones may be considered to be 
equivalent to additional sources, and thus are subject to the same separation process as the 
desired � source signals. It is obvious, that we are not interested in separation of source 
noises, and their cancellation is a major issue to solve. At this point, it is worth mentioning 
that ICA methods allow only to obtain an unbiased estimate of the unmixing matrix ,. . 
Furthermore, due to memoryless structure of such methods, by definition, they cannot remove 
the additive noise. Therefore, the vector representing independent components can be written 
as:  

 '��� � ,.���� � ,.N����� �  ���O � 'P��� �  Q��� (5) 
 
where 'P��� � ,.����� is the vector of noise free independent signals and  Q��� � ,. ��� 
denotes the noise component. 

2.2 Convolutive model in time domain and ICA 

While many algorithms have been developed for instantaneous mixing models, in many 
real-world applications, such as acoustic tests carried out in a closed jet wind tunnel, without 
any acoustic liner installed on the walls of the test section, the mixing process is more 
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complex. In such situation, convolutive mixing arises due to time delays resulting from sound 
propagation over space and the multipath generated by reflections on the reflective surfaces of 
the test section.  

Consider here that � sources �R��� = [�ST���…�SU���#$ radiate from locations  R � !V�…V�# on  microphones at positions W��� � !H����… H����#. The observations ��H�, �� measured by the �XY microphone, concerning the original sources are generally done 
in practical situations with background noise. Therefore, ��H�, �� can be modelled as follows:  

 

��H�, �� � ��
���

; �Z[,\9�\9
]^

_
�� ` a�Ca � ����� (6) 

 
where �Z[,\9 	are coefficients at time � of the  mixing matrix	�W,R, characterizing the impulse 
response of the propagation medium between the original sources and the microphones. 
Hereafter, in order to simplified the notations, ��H�, ��, �Z[,\9 	 and �\9are replaced with �����, ��,�, ����� respectively.  

We assume now, that the impulse responses can be modelled by a finite impulse response 
(FIR) of length 4 and the observations sampled at frequency ef. In this case, ����� measured 

at the discrete time �g � h ei f takes the form: 

 

���h� � ����,�,j���h ` >� � ���h�
k

j��

�

���
 (7) 

 
where ��,� � ���,�,_, … , ��,�,k�. 
 
Eq.(7) models the acoustic mixing as a multiple-input multiple-output (MIMO) linear 

system (Fig.2). 
 

 
Fig.2. Block diagram of the convolutive BSS task. 
 
As for the instantaneous separation problem (see Sect. (Instantaneous Model and ICA)), 

the aim of multichannel deconvolution is to recover the source signals ��h� from the 
observations ��h�, up to a scaled, permuted, and delayed version of source signals, i.e., the 
estimates of sources '�h� � �l�h� � 12�h���h� This is usually achieved by estimating a 
matrix of unmixing filters m�,� � �m�,�,_, … , m�,�,k� giving for the nth source signal: 
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(��h� = � � m�,�,j���h − >�	; 		� = 1,…�"
���

k
j�_  (8) 

 
It is possible to write (��h� in terms of the source signals by substituting ���h� Eq.(7) 

into Eq.(8): 
 (��h� = (lf,� + (nop,� + (q�,� (9) 
 

where: 
 

(lf,��h� = ��m�� ∗ ��� ∗ ����h�"
���  (10) 

 
contains the desired primary source ���h� and where ∗ denotes the convolution operator;  
 

(nop,��h� = ���s���st�
��m��s ∗ ���s ∗ ����h�"
���  (11) 

 
is Interfering Point Sources IPS; 
 

(q�,��h� = ��m�� ∗ ����h�"
���  (12) 

 
denotes the Background Noise component. 
 
Eq.(9) shows that in the case of noisy convolutive mixtures, the separation filters m�,� 

must remove the both the interference introduced by the mixing process and the noise 
component. In general, BSS algorithms focus on the suppression of interfering point sources 
and have only a limited capability of attenuating background noise. 
 

2.3 Convolutive model in frequency domain 

Time-domain algorithms can be developed to perform the separation task. However, they 
can be difficult to code primarily due to the multichannel convolution operations involved. 
One way to simplify the conceptualization of convolutive BSS algorithms is to transform the 
separation problem into the frequency domain. The linear convolution in the time domain 
(Eq.(7)) can be written in the frequency domain as separate multiplications for each 
frequency: 

 u�v� = ��v�w�v� + x�v� (13) 
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At each frequency v = 2ye, ��v� is a complex  ×� matrix, u�v� and x�v� are 
complex  × 1 vector and similarly w�v� is a � × 1 vector. The frequency transformation is 
typically computed using a Discrete Fourier Transform (DFT) of ����,  ���, ����, within a 
time frame of prescribed length. It is clear that the convolutive mixtures blind separation in a 
time-domain is changed into instantaneous mixtures blind separation in the frequency-
domain. Therefore, instantaneous mixtures blind separation methods in the frequency domain 
can be used to solve the blind deconvolution problems in the time domain. 

Each frequency component of the mixture signal contains an instantaneous mixture of the 
corresponding frequency components of the underlying source signals. The separation 
operation at the frequency consists in finding ,�v� such that: 

 z�v� = ,�v�u�v� (14) 
 

and by taking into account (Eq.(13)), we have: 
 z�v� = ,�v���v�w�v� + ,�v�x�v� (15) 
 
An accurate separation will be occurred if:  
 ,�v���v� = { (16) 
 

and the background noise x�v� removed before the separation process. 
 

3 BAYESIAN SOURCE SEPARATION 

The problem of source separation is particularly difficult to solve when it concerns 
acoustic sources. One of the ways to facilitate separation, is to take into account any 
information previously available on the source signals and the mixing coefficients [18]. 
Bayesian methods are quite suitable for this task, since they naturally integrate information. 
Moreover, there is a remarkable aspect of Bayesian source separation methods which is their 
robustness to noise. Indeed, differently from ICA methods, the Bayesian approach takes noise 
into account in its formulation [14]. 

3.1 Formulation 

The problem is formulated in a probabilistic framework by treating the mixture matrix, 
sources and observations as random variables. The fundamental point in the Bayesian 
approach is Baye’s theorem which allows to merge all those information in order to deduce a 
posterior probability description of the unknown variables:  

 6��, w|}� ∝ 6�}|�, w�6���6�w� (17) 
 

where 6��, w|u� is the joint posterior probability density of the unknown � and w, 6�u|�, w�  is the likelihood and 6��� and 6�w� the prior probability densities.  
 
Let us denote by � = ���, �p, ��� the set of the hyperparameters associated respectively 

with the variables � and w and x of the mixing model (Eq.(7)). Then we have: 
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 6��, w|u, �� ∝ 6�u|�, w, ���6��, ���6�w, �p� (18) 
 
This relation is the point of the Bayesian source separation using 6��, w|u, ��. Different 

estimators for � and w can be defined. One of them considered in this study is the Joint 
Maximum A Posterior (JMAP).  

4 JOINT MAXIMUM A POSTERIORI (JMAP) ESTIMATION 

The JMAP estimator is defined as: 
 N�., w.O = �H?max��,w�D6��, w|u, ��E = argmin��,w� D���, w�E (19) 

 
where: 

 ���, w� = −>�D6��, w|u, ��E	 											= 	�� + �� + �� 
(20) 

 

��� = −ln	N6�u|�, w, ���O�� = − lnN6��|���O								�� = − lnN6�w|�p�O										 (21) 

 
The first term �� of the criterion represents the ad-equation to the observations which is 

obtained from the likelihood, while the two last terms �� and �� of the criterion depend only 
on the priors 6��� and 6�w�.  One of the easiest optimization methods for ���, w� is an 
alternate optimization with respect to � and then to w [19]: 

 

��. = argmin� ����, w.��							w. = argmin� ����., w�� (22) 

 
Studying the convergence properties of such algorithms in general is not easy. There is no 

guarantee that such algorithms converge toward the global JMAP solutions, but may converge 
to any local minimum. However, satisfactory solutions can be obtained by choosing 
appropriate priors 6��� and 6�w� or by imposing constraints on the mixing matrix and on the 
sources [12]. 

5 EXPERIMENT WITH LOUDSPEAKERS 

In the framework of this study an experiment has been carried out in anechoic room to 
evaluate the ability of Bayesian source separation method to separate successfully acoustic 
sources that simulate practical situations (Fig.3). The acoustic sources are radiated by three 
load-speakers 4�1, 4�2, and 4�3. 4�1 radiates a pure sine source �� at 4 kHz. 4�2 emits a 
narrow band source �� in the frequency range [3 kHz, 5 kHz] and 4�3 a broadband source �� 
in the range [2 kHz, 10 kHz]. The acoustic radiation of the sources is measured by an array of 
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fifteen microphones. Three reference microphones ��e_1,	��e_2 and ��e_3 where also 
mounted, near the output of the load-speakers. The acoustic waves �����, ����� and �����  
emitted  respectively by 4�1, 4�2, and 4�3  were individually measured both by the array of 
microphones and reference microphones. 

 
Fig. 3. Experimental set-up in an anechoic chamber. 

 
The measurements by the array were also performed when the couples of load-speakers 

(4�1, 4�2), (4�1, 4�3), and (4�2, 4�3), were active to produce on the microphones the signal 
mixtures ������ � ����� � �����, ������ � ����� � �����, ������ � ����� � �����. The 
objective followed in this study is to separate the power spectral densities (PSD) of �� , ��  
and ��  from the PSDs of the mixtures ������, ������ and ������. In order to simplify the 
reading of the article the following notations are adopted; 1) ��	�� � 1	�&	3� is associated to 
both to source number � and to its PSD ��	; 2) (�� � �� 	) represents the PSD of the mixture ������ � ����� � ����� (�, �	 � 	1		�&	3	��C	�	 � 	�) measured by the array. 

Clearly, situation is arduous because the supports in the frequency domain of the three 
primary sources overlap. The source separation based on a Bayesian approach takes on its full 
meaning since prior information on the primary sources can be exploited to help their 
separation. Indeed, we have w� and w� which radiate in a frequency band munch weaker than w�, and w� in a frequency band munch weaker than w�. This naturally will lead to use of 
parsimony in the frequency domain to facilitate the source separation considered hereafter. 

 

6 TESTS WITH ARTIFICIAL MIXTURES 

Before preceding the source separation starting from the measured signals with the 
microphone array, trials of source separation were performed with artificial mixtures of the 
real sources. In a first step, the signals measured at the output of the reference microphones �e_1 ,	��e_2 and ��e_3 were filtered in frequency bands [3.8 kHz, 4.2 kHz], [1 kHz, 8 kHz] 
and [0.3 kHz, 14 kHz] respectively. The results of the filtering constitute the primary source 
signals ��, �� and �� . These later were numerically mixed pairwise according to the 
convolutive model described by (Eq.(7)). The mixing coefficients have been chosen to obtain 
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the same PSDs levels as those measured on the microphones during the experiment presented 
in Section 5. Thus, the pressure field ����� received on the �XY microphone is of the form:  

 ����� = ���g 00 ��j� ��g����j���� + ����� (23) 

where the subscripts for the mixing coefficients of � and w stand for:   
 

�h, > � 1, 2	����	��	��C	��	�H�	������	h, > � 1, 3	����	��	��C	��	�H�	������							h, > � 2, 3	����	��	��C	��	�H�	������											 (24) 

 
It should be noted that, although artificial, the mixed signals thus obtained correspond of 

mixture actually encountered in the experimental setup defined in Section 5. 

6.1 Artificial mixtures analysis 

The upper plots in Fig.4 show the time series of w� the sine at 4 kHz, w�, the narrow band 
source in the range [3 kHz, 5 kHz] and w� the broadband source in the interval 
 [2 kHz, 10 kHz]. The plots in the centre present the histogram of �� where two regions are 
dominant, corresponding to high and lower levels of the w�. Nevertheless, the histograms of w� and w�, exhibit a bell shape (center graphs) corresponding to a Gaussian distribution. 
Scatter displayed in the lower plots depict joint distributions of the primary sources (lower 
graphs). It appears that; i) w0 and w� are independent with uniform distributions on a 
parallelogram; ii) the same comments can be done for w� and w�; iii) the scatter plot for w� 
and w� shows this time a distribution of two independent Gaussian signals which is 
rotationally symmetrical. 

 

 
 
Fig. 4. Primary source signals w�, w� and w� (upper) - Histograms of the primary source signals 

(centre) - Joint distributions of the primary source signals (lower). 
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The upper graphs in Fig.5 exhibits the Power Spectral Densities (PSD) of the primary 

source signals shown in Fig.4 (upper graphs). In the center of Fig.5, it is superimposed from 
left to right the PSDs of (w�, w�), (w� , w�) and (w� , w�) measured with the virtual microphone 
number one of the array. The mixtures of the PSDs (w� + w� ), (w� + w�) and 
 (w� + w�) on which will be applied the Bayesian separation of sources are presented in the 
lower plots. 

 

 
 
Fig.5. PSDs of primary source signals shown in the upper plots of Fig.4 (upper) - Superposition of 

source signal PSDs (w�, w�), (w� , w�) and  (w� , w�) (centre) - Artificial mixtures of primary sources 
(lower) 

7 SOURCE AND MIXING MATRIX PRIOR CHOICE – LIKELIHOO D 
DESCRIPTION 

It is necessary to defined the priors 6���, 6�w� and the likelihood 6�u|�, w� allowing to 
defined the posterior probability Eq.(17) for solving the Bayesian source separation problem 
defined by Eq.(19) for the data obtained from the experiment described in Sections 5 and 6 
when the acoustic sources are pairwise active.  

7.1 Source priors 

We have different possible priors for acoustic sources w�, w� and w�, depending on many 
design choices, and each combination of these choices giving a different algorithm. We define 
three cases in order to assess the separation capability.  
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7.1.1   Gaussian priors for w 
In this first case, we consider that there is no specific knowledge on the three acoustic 

sources. In order to represent our state of ignorance, we can adopt for	w�, w� and w� to have as 
prior law, a Gaussian distribution, with zero-mean, and of dispersion law �p �  (i=1 to 3), thus: 

 ��~¢Nw�£0, �p �O ∝ ��6 ¤− 12�f � ‖w�‖��¦ (25) 

7.1.2 Sparsity prior for 	w� and Gaussian priors for w� and w� 
This second case considers that 	w� is mixed either with w� or w� It is assumed to be known 

that the acoustic radiation of 	w� is performed in a weaker frequency band than w� or w�. The 
spectrum of 	w� can then be considered sparse (i.e. has only few nonzero elements) in the 
frequency domain. This information can be translated via Laplace density:   

 ��~ℒ�w�|¨�� ∝ ��6�−¨�‖w�‖� � (26) 
 

7.2 Mixing matrix prior 

The elements of the mixing matrix � reflect the coupling between the sources and 
microphones. In a clearly physical situation, these matrix elements depend on the physical 
transmission from the sources to the microphones. For now, we consider the situation where 
the mixing process is modelled generically because it is not well understood. Indeed, in the 
experiment described in Section 5, the sources are very close to the microphones. Thus, the 
attenuation of the source levels, between their emission locations, to the microphones, does 
not follow the classical geometric law in 1/R (R is the distance between the sources and the 
microphones). In order to represent our state of ignorance on �, it is assumed that the mixing 
matrix has a Gaussian distribution of zero-mean and with a diagonal covariance matrix ���: 

 �~¢��|0, ���� ∝ ��6 ¤− 12��� ‖�‖��¦ (27) 

7.3 Likelihood 

It is assumed that the noise associated with the experimental measurements can reasonably 
be represented as a centered Gaussian process:  

 x~¢�x|0, ���� ∝ ��6 ¤− 12��� ‖x‖��¦ (28) 

 
The covariance of the noise indicates that each component of x in Eq.(7) is contaminated 

by independent identically distributed random noise. The likelihood can be therefore written 
of the form: 

 6�u|�, w, ��� 	∝ 	��6 ¤− 12��� ‖u − �w‖��¦ (29) 
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8 JMAP SOLUTIONS FOR THE DATA ANALYSIS 

We have described in Section 4 the principle of the optimization method for obtaining 
generic JMAP solutions � and w. In the following we examine the possible solutions which 
can be obtained for the mixing cases defined with Eq.(24), by using Eq.(27) for the matrix 
prior, Eq.(28) for the likelihood and Eqs.(25) and (26) depending the source priors considered.  

8.1 JMAP : Gaussian priors 	w	 
In this first situation, we consider that the three acoustic sources 	w�, 	w� and 	w� have 

Gaussian priors, defined by Eq.(25).  By taking into account the Eqs.(27) and (28), the 
logarithm of the joint density Eq.(20), becomes: 

 ���, w� = 12��� ‖u − �gwg − �jwj‖�� + 12��� ‖�‖�� + 12�p©� ‖wg‖�� + 12�pª� ‖wj‖�� (30) 

 
During the iterative process, analytic solutions are used to compute estimates of � (where 	wg and 	wj are assumed to be known) of 	wg (where � and 	wj are assumed to be known) and 

of 	wj (where � and 	wg are assumed to be known):  
 

«¬
¬® +̄� = }�̄$N�̄�̄X + °�)O/�																																									�.g� = N+̄gX +̄g + °p©)O/��+̄gX} − +̄jX+̄g�̄j�													�̄j� = N+̄jX+̄j + °pª)O/��+̄jX} − +̄gX +̄hj�̄g�												  (31) 

 
 where: 

«¬¬
¬
¬¬¬
®°� = ������																																°p© = ����p©� 																															°pª = ����pª� 																																			

 (32) 

8.28.28.28.2 JMAP SPARSE : Sparsity prior for 	w0 and Gaussian priors 	w� and 	w�				
For the third case corresponding to the mixing of 	w�	with 	w� or 	w�. 	w� has a Laplace 

prior  Eq.(26) to take into account the sparsity of its PSD. 	w� and 	w� has a Gaussian prior 
Eq.(25). By taking into account the Eqs.(27) and (28), the logarithm of the joint density 
Eq.(20), becomes: 

 ���, w� = 12��� ‖u − �gwg − ��w�‖�� + 12��� ‖�‖�� + 12�p©� ‖wg‖�� + ¨�‖w�‖�  (33) 

 
where the subscript h = 2 or  h = 3 are used when  	w� or 	w� is respectively active.  
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According to Eq.(22)), the estimates of � and w can be obtained using a three steps 

algorithm ALS  [19]:  
 

«¬
¬® +̄� = argmin� D‖u − �gwg − ��w�‖�� + °�‖�‖��	E					�.g� = argminp© �	‖u − �gwg − ��w�‖�� + °p³‖wg‖��	�	�̄�� = �H?minpT �‖u − �gwg − ��w�‖�� + °�‖w�‖� �	  (34) 

 
where:  
 

«¬¬

¬¬® °� = ������																																°p© = ����p©� 																															°� = ¨����																																	

 (35) 

 
During the iterative process analytic solutions are used to compute estimates of � (where 	w� or 	w� is assumed to be known) and 	w� or 	w� (where � and 	w� are assumed to be known):  
 

� +̄� = }�̄$N�̄�̄X + °�)O/�																													�.g� = N+̄gX +̄g + °p©)O/��+̄gX} − +̄jX+̄g�̄j 	�										  (36) 

 
In contrast, it derives from the non-differentiability of the penalty function °�‖w�‖�  in the 

objective function ��w0� = ‖u − �gwg − ��w�‖�� + °�‖w�‖�  deriving from Eq.(33), there 
are no closed-form solutions for ��w0� that can be used in the update rule for 	w�. Thus, we 
need to use an optimization scheme for this step. The 	´� norm regularized least squares 
LASSO [20] that seeks the minimizer of ��w0� is chosen in this study because it provides the 
best performance in the sense of the sparsity/measurement tradeoff.  

8.3 JMAP SPARSE : Sparsity prior for 	w� and Gaussian  for 	w� 

This last case is quite similar of the one examined in Section 8.2 but here, since it is 
applied a sparsity prior for 	w� and a Gaussian one for 	w�, and the subscripts 1 and h are 
replaced with  2 and 3 respectively in Eqs.(33), (34) and (35).   

 
Again, due to the non-differentiability of the penalty function °�‖w�‖�  in the objective 

function function ��w�� = ‖u − ��w� − ��w�‖�� + °�‖w�‖� , there are no closed-form 
solutions for ��w��that can be used in the update rule for 	w� Thus, we need to use an 
optimization scheme for this step done with regularized least squares LASSO [20].  
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9 SEPARATION RESULTS 

The Bayesian source separation approach presented in Section 8 is applied here on the data 
recorded during the experiment described in Section 5. In the first part, it is examined the 
separation results when the mixtures are performed artificially (see Section 6) and in the 
second part when they are measured directly with the array of microphones (see Section 5). 
We consider for both kind of mixtures that the priors for the mixing matrix (Eq.(27)) and the 
likelihood (Eq.(29)) are Gaussian. The cases 1 to 3 of source priors defined in Section 7.1 will 
be studied for the observations mixed artificially, while only cases 2 and 3 will be considered 
for the mixtures directly measured. 

9.1 Separation results of real data mixed artificia lly 

The PSD observations pairwise mixed artificially (lower plots in Fig.5) are unmixed in 
Fig.6, based on Eqs.(30), (31) and (32),  with °� = 800, °p© � 0.2  and °pª � 0.001 (the 
subscripts h, > are defined in Eq.(24)). The background noise remains high. Nevertheless, the 
frequency radiation of the tonal source is well retrieved in the PSD of 	w� when it is mixed 
with 	w� or 	w�. In contrast, the separation result concerning the mixture (	w� +	w�) is not 
totally well done. 
 

 
 

Fig.6. Case of observations mixed artificially - Unmixed PSDs (	w� +	w�), (	w� +	w�) and (	w� +	w�) 
using Gaussian priors for 	w�, 	w� and 	w�. 

 
It is examined the unmixed PSDs of (	w�+ 	w�) and  (	w�+ 	w�) when a sparsity prior is 

affected to 	w� and Gaussian one to 	w� or 	w� (here  °� � 800 , °p© � 0.3  and °pª � 1.65, 
the subscripts h � 1	, > � 2	&H	3). The interest of sparsity prior clearly appears on the 
separation results shown in Fig.7. Only a peak at 4 kHz is found in the estimate 	w.� of the 
PSD tonal source 	w�. Moreover, the shapes of the original source spectra 	w� and 	w� are 
correctly restored in 	w.� and 	w.� respectively. 
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Fig.7. Case of observations mixed artificially - Unmixed PSDs (	w� +	w�) and  (	w� +	w�)   using 
Laplace prior for 	w� and Gaussian prior for 	w� and 	w�. 

 
The unmixed PSDs of (	w� +	w�) (with  °� = 800, °p© � 0.3  and °pª � 1.65, k=2 and  

l=3) with a sparsity prior affected to 	w� and a Gaussian to 	w� show again, the interest of 
sparsity prior in Fig.8. The frequency supports where both sources 	w.� and 	w.� are emitting are 
well restored and their original PSDs shapes too.  

 
Fig.8. Case of observations mixed artificially - Unmixed PSD (	w� +	w�) using Laplace prior for 	w� 
and Gaussian Prior for 	w�. 

9.2 Experimental results 

The Bayesian source separation are applied in this section to the mixtures (	w� +	w�), (	w� 
+	w�) and (	w�+	w�) measured during the experiment described in Section 5. The reference 
signals ��e_1, ��e_2, and ��e_3 shown in Fig.9 (upper plots) considered here are not 
filtered compared to the case studied with the artificial mixtures (see Fig.4).The consequence 
is that the histogram of 	w� seems to be characterized by a Gaussian distribution and this 
remark can be applied for the histograms of 	w� and 	w� (Fig.9) center graphs). The scatter 
plots of the joint distributions (Fig.9 lower graphs) present a distribution of two independent 
Gaussian signals for (	w�, 	w�) , (	w�, 	w�) and (	w�, 	w�). 
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Fig.9. Real data - Primary sources measured by ��e_1, ��e_2, and ��e_3 microphones (upper); 
Histograms of the primary sources (centre); Joint distributions of the primary sources (lower) 

 
It is presented in the upper plots of Fig.10 the spectra of the reference source signals. As it 

was foreseeable, the PSD of the sinus signal is here noisier than its filtered version presented 
in the upper plots in Fig.5. The PSDs of (	w�, 	w�) , (	w�, 	w�) and (	w�, 	w�) measured with 
microphone 1 of the array are superimposed from left to right in Fig.10 and the mixtures of 
the PSDs of (	w� +	w�), (	w� +	w�) and (	w�+	w�)  presented in the lower graphs.  
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Fig.10. Real data - PSDs of the reference source signals measured with a microphone of the array 

(upper) -PSDs of reference source signals superimposed pairwise (centre)  - PSDs of the mixture 
when the loadspeakers where pairwise active (lower). 

 
The separation results obtained with real data mixed pairwise artificially, presented in 

Section 9.1, have clearly demonstrated the interest to use sparsity priors when we are in 
presence of a primary source with an acoustic emission in a frequency band much narrow than 
those of another primary source. It is why, only the case 2 of Section 7.1 will be considered 
here. The priors for the mixing matrix (Eq.(27)) and the likelihood (Eq.(29)) are again chosen 
Gaussian for the reason already explained in Sections 7.1. The unmixed PSDs of (	w� +	w�) 
and (	w� +	w�) and (	w�+	w�) presented in Fig. 11, show that the Bayesian source separation 
approach is quite relevant in the acoustic signals demixing.   
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Fig.11. Real data - Unmixed PSDs (	w� +	w�), (	w� +	w�) with Laplace prior for 	w� and Gaussian 
prior for 	w� and 	w�; Unmixed PSD (	w�+	w�) with Laplace prior for 	w� and Gaussian prior for 	w� . 

10 CONCLUSIONS  

In this paper, we considered the source separation problem in a Bayesian framework.  We 
compared the separation results involving a tonal source, a broadband source and a wideband 
one mixed pairwise, based on JMAP. For the broadband signal, we use a Gaussian prior and 
for very narrow or tonal we use a Laplace prior. For each case, first the expression of the joint 
posterior law 6��, w|u, �� is obtained and then optimized via an alternating optimization 
algorithm. The main conclusion are: 

- first, the Bayesian approach could be used efficiently on simulated and real data, 
- second, it that using  appropriate priors (Gaussian for the broadband and Laplace for the 

narrowband  or tonal) greatly improve the separation results. 
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