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ABSTRACT

Active research is ongoing to improve the designddferent parts of aircraft
including innovative devices of noise reductioneaoftassessed during experiments
conducted with scaled models in wind tunnels orsiitu with real aircrafts. Source
localization methods play a fundamental role tonidg the source locations which are at
the origin of the annoyance. Another issue for ¢hegperiments is the validation of
theoretical models, requiring a fine characteraatof primary sound sources (source
signals). The issue is to extract the primary sewwignals from the recorded mixtures at
the microphone output. Blind signal separation naplnes seem to be suitable to respond
to this problem.. Bayesian source separation apjrbas the advantage of incorporating
relevant information about sources and mixing systéo help the separation process. It
is applied to tests performed in an anechoic chambéh tonal, narrow-band and
broadband sources measured with an array of mioragsh It is shown that the source
separation results are better when sparsity paogsused rather than Gaussian ones for
all the sources.

1 INTRODUCTION

The reduction of the flyover noise footprint geriedaby the aircraft is a priority for the
civilian aeronautics industry, which in the nextcdde will be confronted with more
restrictive noise regulation in urban areas. Td dath these issues, active research by engine
manufacturers is ongoing in improving the desigmbdts [1], fan [2] and compressor blades
[3], and nozzles [4], while airframe builders atedying landing gear [5] and flap design [6].

In order to study the efficiency of aircraft noisluction tools the Computational Aero-
Acoustics (CAA) algorithms [7] are frequently usedAA offers a way to obtain an
understanding of the physics at the origin in najgemeration by performing numerical



7" Berlin Beamforming Conference 2018 Sciman and Techwoman

simulations of aeroacoustics phenomena. Howeves;amustics problems typically involve
a broad range of frequencies so that numericalugso of the high-frequency waves with
extremely short wavelengths becomes a great obsta@ccurate numerical simulation with
CAA.

It is also possible to use semi-empirical models Vidich are less sophisticated than
numerical methods but has a great advantage tadera@wick information on the acoustic
behaviour of noise sources during developmentrava aircraft.

Another important step in understanding the medmsi at the origin of the noise
produced by aircraft concerns the experiments ccteduwith scaled models in the anechoic
wind tunnels or in situ with real aircraft. In tlegractical situations, source localization
methods using sensors arrays [9], [10], [11] ofte&ry a fundamental role. Another objective
of the experiments is to allow the validation oédhetical models based on knowledge of the
original sound sources (source signals) charatiteyidn this case, the problem to be solved
is different from the source localization, since thsue is to extract the source signals from
the recorded mixtures at the sensor output.

Blind Signal Separation (BSS) [12] techniques sdenbe suitable to respond to the
mentioned problem. The term blind is intended tplyrthat such methods can separate data
into source signal even if very little is known abdhe nature of those source signals.
Independent Component Analysis (ICA) [12] belongsatclass of blind source separation
(BSS) methods for separating data into underlymfigrmational components, where such
data can take the form of images, sounds, or teleaanication channels.

ICA assumes that the observations are instantanimems combinations of the source
signals and that the sources are pairwise stailgticndependent. The mixing matrix is
supposed to be invertible which gives the possyhit define a separating matrix.

ICA methods then try to find this separation matvixich will be near to the inverse of the
mixing matrix up to a permutation and a scaling @uity. Despite success of ICA in
separation with simulated signals or in applicatisach as electrocardiogram, image
separation, it is problematic when applied to attousource separation because the mixing
system is not simply instantaneous, but convolutind sometimes with interferences caused
by the reflections of the primary sources. Furthmen the unobserved source components
can be correlated, sparse or positive. This leadsrally to the idea of Informed Source
Separation (ISS), where the algorithm design basedayesian approach which allows
incorporating relevant information about sources @@ mixing matrix [13]. This approach is
adopted in the present.

In this study, we address Bayesian separation usimgylated and experimental data
involving three sound sources, which are mixedwiag on an array of microphones. The
first source is monochromatic; the second one hasarsow-band and the third one a
broadband. The main objective of this paper isxgae sparse prior distribution to perform
the separation of the primary source Power spediakities based on Bayesian approach
with sparsity enforcing priors[14].

The paper is organized as follows. Section 2 intced briefly the mixtures and the separation
models for instantaneous and convolutive applicati®ayesian source separation approach
is detailed in Section 3 and in Section 4 Joint iMasm A Posteriori (JMAP) uses for solving
the source separation problem. Section 5 pregbetexperiment carried out with load-
speakers, which is used to evaluate the effici@idie proposed Bayesian source separation
method. Section 6 describes tests performed wahalgservations mixed artificially and their
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statistical and spectral analysis. The priors lier mixing matrix, the acoustic sources and the
likelihood considered to solve the separation mwblare detailed in Section 7. JMAP
solutions for the data analysis concerning the exynt described in the paper are presented
in Section 8 and in Section 9 the separation smiufor the experimental data. These
experiment demonstrated that the proposed methagpkcable to real world problems of
source separation.

2 MIXTURE AND SEPARATION MODELS

The difficulty of the blind source separation tastongly depends on the way in which the
signals are mixed within the physical environmdrite simplest mixing scenario is termed
instantaneous mixing [15], for which most early B&§orithms were designed. However,
real-world acoustical paths lead to convolutive imgx[16] of the sources when measured at
the acoustic sensor locations, and the degree gingiis significant when propagation
medium is not anechoic. Both kinds of model areflyripresented in the following.

2.1 Instantaneous Model and ICA

One considers the mixing and filtering processes tllé unknown input sources
S,(t),(n=1,2,..,N) that may have different physical models, dependimg specific
applications. In the simplest cagé, mixed signals,,(t),(m = 1,2, ..., M) are assumed to
be linear combinations of theé (typically M > N) unknown source signatg (t) [17]:

N

%, () = Z U nSn(t) + em(); (M = 1,2, ..., M) (1)

n=1

or in matrix form:
x(t) = As(t) + e(t) (2)

wherex(t) = [x,(t) ...xy(¢)]7 is a vector of microphone signas§t) = [s;(t) ... sy (£)]7

is a vector of source(t) = [e;(t) ...eu(t)]" is a vector of additive noise, amtis an
unknown full rank M XN mixing matrix containing the  coefficients
Amnm = 1to M;n = 1to N of the linear time invariant system characterizing transfer
from the sources to the observations. Thus, isssimed that the signals received by the array
of microphones are weighted sums (linear mixtuoégrimary sources.

The objective of blind source separation is to famdinverse system in order to estimate
the primary source signalss(t). This estimation is performed on a vector
y(@) = [y (@) ... yn(®)]T wherey(t) is a linear combinations of the microphone signty.
Basically, for linear instantaneous mixturéd§A methods aim at estimating a demixing
matrix B yielding estimated sourcggt) = [y,(t) ...yy(£)]" (Fig.1).
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Fig.1. Block diagram of the instantaneous BSStask.

The majority of research efforts for estimatiBghave been devoted to the noiseless case,
where e(t) = 0. Thus, it is not too difficult to show, ifl is inversibleB = A~1, then
y(t) = Bx(t) = BAs(t) = s(t). The output independence fp(t) leads to a matriB that
satisfiesBA = PD, whereP is a permutation matrix arfdl a scale matrix [17]. The estimated
y(t) are equal to the primary source&), up to a permutation and a scale. A convenient
criterion of independence is the Kullback-Leibi&r divergence [18]:

N
KL (py ), prn (yn)) = fR py ¥)log (%) dy 3
n=1 N n=1Fy,Un

The divergencekL has the property to be null only when the varightg,}_, are
statistically independent. This allows obtainingestimate foB as follows:

N
<py ), 1_[ Dy, (yn)>
n=1

The estimation of a separating matBxin the presence of noise is rather difficult. The
effect of incident noise fields impinging oM microphones may be considered to be
equivalent to additional sources, and thus areestildp the same separation process as the
desiredN source signals. It is obvious, that we are nog¢regted in separation of source
noises, and their cancellation is a major issusolge. At this point, it is worth mentioning
that ICA methods allow only to obtain an unbiasetineate of the unmixing matriB.
Furthermore, due to memoryless structure of sudhads, by definition, they cannot remove
the additive noise. Therefore, the vector repraésgnhdependent components can be written
as:

A

B =arg mglxKL

(4)

y(t) = Bx(t) = B(As(t) + e(®)) = y(t) + &(t) (5)

where y(t) = BAs(t) is the vector of noise free independent signald &ft) = Be(t)
denotes the noise component.

2.2 Convolutive model in time domain and ICA

While many algorithms have been developed for matzeous mixing models, in many
real-world applications, such as acoustic testsezhout in a closed jet wind tunnel, without
any acoustic liner installed on the walls of thetteection, the mixing process is more
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complex. In such situation, convolutive mixing asgdue to time delays resulting from sound
propagation over space and the multipath genetgtedflections on the reflective surfaces of
the test section.

Consider here thatN sources s, (t) = [s,, (t) ...s,,N(t)]T radiate from locations
v =[v; vy] on M microphones at positiong(t) = [r;(t) ..ry(t)]. The observations
x(r,,, t) measured by the" microphone, concerning the original sources anegdly done
in practical situations with background noise. Efiere,x(rn,,, t) can be modelled as follows:

Nt
X (1 ) = Z | i (€ = Dt + (@) ©)

0

wherea,. . are coefficients at time of the mixingmatrix a,.,, characterizing the impulse
response of the propagation medium between theanatigources and the microphones.
Hereafter, in order to simplified the notationgy,,t), a, , ands, are replaced with
Xm (t), Qmn, Sn(t) respectively.

We assume now, that the impulse responses can @ellsw by a finite impulse response
(FIR) of lengthL and the observations sampled at frequefacin this casex,, (t) measured

at the discrete timg, = k/f takes the form:
S

N L
X (K) =Z;ammsn(k D) + em (k) (7)

wherea, , = (Amnor > GmnL)-

Eq.(7) models the acoustic mixing as a multipledinmultiple-output (MIMO) linear
system (Fig.2).

&

si(t)

'
(0 :ﬁ, Yl
Mlxtng filters e (t)\f Separating filters

Fig.2. Block diagram of the convol utive BSStask.

As for the instantaneous separation problem (se& Sastantaneous Model and ICA)),
the aim of multichannel deconvolution is to recotbke source signals(k) from the
observationsx(k), up to a scaled, permuted, and delayed versi®owifce signals, i.e., the
estimates of sourceg(k) = §(k) = PD(k)s(k) This is usually achieved by estimating a
matrix of unmixing filtersb,, , = (b n,0s --» bmn,) 9iving for the i source signal:
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L

M
() =D ) bpasta(k =D n=1,..N (®)

=0 m=1

It is possible to writey, (k) in terms of the source signals by substituting(k) Eq.(7)
into Eq.(8):

Yn(k) = Vs + Vipsn + Vann 9)
where:
M
9on() = D" (byun * Gun * 5) () (10)
m=1

contains the desired primary sourg€k) and where: denotes the convolution operator;

N M
Vipsn() = D" Byt * Gyt 52) () (1)
n'=1 m=1
n'#n
is Interfering Point Sources IPS;
M
Va0 = D (byun * em) () (12)
m=1

denotes the Background Noise component.

Eq.(9) shows that in the case of noisy convolutivigtures, the separation filtets,, ,,

must remove the both the interference introducedth®y mixing process and the noise
component. In general, BSS algorithms focus onstigpression of interfering point sources

and have only a limited capability of attenuatiragkground noise.

2.3 Convolutive model in frequency domain

Time-domain algorithms can be developed to perfthrenseparation task. However, they
can be difficult to code primarily due to the meiftannel convolution operations involved.
One way to simplify the conceptualization of conmtole BSS algorithms is to transform the

separation problem into the frequency domain. Theal convolution in the time domain
(Eq.(7)) can be written in the frequency domain separate multiplications for each
frequency:

X(w) =A(w)S(w) + E(w) (13)



7" Berlin Beamforming Conference 2018 Sciman and Techwoman

At each frequencyw = 2rf, A(w) is a complexM x N matrix, X(w) and E(w) are
complexM x 1 vector and similarh§(w) is aN x 1 vector. The frequency transformation is
typically computed using a Discrete Fourier TransfdDFT) of x(t), e(t), s(t), within a
time frame of prescribed length. It is clear theg tonvolutive mixtures blind separation in a
time-domain is changed into instantaneous mixtuslesd separation in the frequency-
domain. Therefore, instantaneous mixtures blincisgmn methods in the frequency domain
can be used to solve the blind deconvolution problen the time domain.

Each frequency component of the mixture signal @iostan instantaneous mixture of the
corresponding frequency components of the undeylysource signals. The separation
operation at the frequency consists in findB@) such that:

Y(0) = B(w)X(w) (14)
and by taking into account (Eq.(13)), we have:
Y(w) = B(w)A(w)S(w) + B(w)E(w) (15)
An accurate separation will be occurred if;
B(w)A(w) =1 (16)

and the background noig€w) removed before the separation process.

3 BAYESIAN SOURCE SEPARATION

The problem of source separation is particularlffiadiit to solve when it concerns
acoustic sources. One of the ways to facilitateason, is to take into account any
information previously available on the source algnand the mixing coefficients [18].
Bayesian methods are quite suitable for this tasice they naturally integrate information.
Moreover, there is a remarkable aspect of Bayesiamnce separation methods which is their
robustness to noise. Indeed, differently from ICAthods, the Bayesian approach takes noise
into account in its formulation [14].

3.1 Formulation

The problem is formulated in a probabilistic franoekv by treating the mixture matrix,
sources and observations as random variables. Uhdamental point in the Bayesian
approach is Baye’s theorem which allows to mergéhabke information in order to deduce a
posterior probability description of the unknownighles:

p(A4,8|X) x p(X|A,S)p(A)p(S) (17)

where p(4, S|X) is the joint posterior probability density of thenknown A and §,
p(X|A4,S) is the likelihood ang(A4) andp(S) the prior probability densities.

Let us denote by = (0,4, 0s,0;) the set of the hyperparameters associated reggkgcti
with the variablesl andS andE of the mixing model (Eq.(7)). Then we have:
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This relation is the point of the Bayesian sourepasation using (4, S|X, 8). Different
estimators forA andS can be defined. One of them considered in thidysia the Joint
Maximum A Posterior (JMAP).

4  JOINT MAXIMUM A POSTERIORI (JMAP) ESTIMATION
The JMAP estimator is defined as:

A,8) = argmax{p(4, S|X,0)} = argmin{/(4, S
(4,5) gmax{p(4,5|X, 0)} gm U489} (19)

where:

= Q1+ Q2+ Q3 (20)

Q. = —In(p(X|4,S,0;))
Q. = —In(p(416,)) (21)
Qs = —In(p(5165))

The first term@Q, of the criterion represents the ad-equation toadibervations which is
obtained from the likelihood, while the two lastns Q, and@Q; of the criterion depend only
on the priorsp(4) andp(S). One of the easiest optimization methods figt, S) is an
alternate optimization with respectAdcand then tc [19]:

A= argmin{](A, 3)}
A

< S (22)
S = argmin{](A, S)}
A

Studying the convergence properties of such algostin general is not easy. There is no
guarantee that such algorithms converge towardltitwal JMAP solutions, but may converge
to any local minimum. However, satisfactory solosocan be obtained by choosing
appropriate priorp(A) andp(S) or by imposing constraints on the mixing matrixiam the
sources [12].

5 EXPERIMENT WITH LOUDSPEAKERS

In the framework of this study an experiment hasnbearried out in anechoic room to
evaluate the ability of Bayesian source separati@thod to separate successfully acoustic
sources that simulate practical situations (Figl3le acoustic sources are radiated by three
load-speakerdS1, LS2, andLS3. LS1 radiates a pure sine sourggat 4 kHz.LS2 emits a
narrow band sourc®, in the frequency range [3 kHz, 5 kHz] ab§B a broadband sourcs
in the range [2 kHz, 10 kHz]. The acoustic radmatid the sources is measured by an array of
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fifteen microphones. Three reference microphoRe$_1, Ref_2 and Ref_3 where also
mounted, near the output of the load-speakers. adoeistic waves, (t), s,(t) ands;(t)
emitted respectively b¥S1, LS2, andLS3 were individually measured both by the array of
microphones and reference microphones.

10 cm \ i | o)

Mixture measu.‘rements with 15 micropﬁones ‘\
L : ‘ N %

> o 9 00 a0 N s ™ ,

15 14 1'5 15 11 10 9 876 6d Ly iy

Fig. 3. Experimental set-up in an anechoic chamber.

The measurements by the array were also perforniesh ihe couples of load-speakers
(LS1, LS2), (LS1, LS3), and (S2, LS3), were active to produce on the microphones tipeasi
mixtures s;,(t) = s;(t) + s,(t), 5135(t) = 51(t) + s5(t), s,3(t) = s,(t) +s5(t). The
objective followed in this study is to separate gmaver spectral densities (PSD) Sif, S,
and S; from the PSDs of the mixtures,(t), s;3(t) ands,s(t). In order to simplify the
reading of the article the following notations adopted; 1)5; (i = 1 to 3) is associated to
both to source numbgrand to its PSI¥; ; 2) (S; + S; ) represents the PSD of the mixture
sij(t) = s;(t) +s;(t) (i, j = 1 to3andi # j) measured by the array.

Clearly, situation is arduous because the supportie frequency domain of the three
primary sources overlap. The source separatiordb@s@ Bayesian approach takes on its full
meaning since prior information on the primary sesr can be exploited to help their
separation. Indeed, we ha$¢ andS, which radiate in a frequency band munch weaker tha
S5, andS; in a frequency band munch weaker ti&n This naturally will lead to use of
parsimony in the frequency domain to facilitate sherce separation considered hereafter.

6 TESTS WITH ARTIFICIAL MIXTURES

Before preceding the source separation starting) ftbe measured signals with the
microphone array, trials of source separation vgendormed with artificial mixtures of the
real sources. In a first step, the signals measatede output of the reference microphones
ef_1,Ref_2 andRef_3 were filtered in frequency bands [3.8 kHz, 4.2 kHZ kHz, 8 kHZ]
and [0.3 kHz, 14 kHz] respectively. The resultdha filtering constitute the primary source
signals S;, S, and S; . These later were numerically mixed pairwise adic to the
convolutive model described by (Eq.(7)). The mixougfficients have been chosen to obtain
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the same PSDs levels as those measured on thepmcres during the experiment presented
in Section 5. Thus, the pressure fig|dt) received on thé" microphone is of the form:

v = (% D)D) e @3)

a;/ \s;(t)
where the subscripts for the mixing coefficientdlainds stand for:

k,l =1,2when S; and S, are active
[k,l = 1,3 when S; and S; are active (24)
k,l =2,3when S, and S5 are active
It should be noted that, although artificial, thexed signals thus obtained correspond of
mixture actually encountered in the experimentalgeefined in Section 5.

6.1 Artificial mixtures analysis

The upper plots in Fig.4 show the time serie§othe sine at 4 kHz,, the narrow band
source in the range [3 kHz, 5 kHz] arf%} the broadband source in the interval
[2 kHz, 10 kHz]. The plots in the centre presémd histogram of; where two regions are
dominant, corresponding to high and lower levelshefS,. Nevertheless, the histograms of
S, and S5, exhibit a bell shape (center graphs) correspantiina Gaussian distribution.
Scatter displayed in the lower plots depict joirgtributions of the primary sources (lower
graphs). It appears that; §; and S, are independent with uniform distributions on a
parallelogram; ii) the same comments can be don&fandsSs;; iii) the scatter plot fos,
and S; shows this time a distribution of two independésaussian signals which is
rotationally symmetrical.

SIMULATED DATA SOURCE SIGNATURES
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Fig. 4. Primary source signals S, S, and S5 (upper) - Histograms of the primary source signals
(centre) - Joint distributions of the primary source signals (lower).
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The upper graphs in Fig.5 exhibits the Power Spe@ensities (PSD) of the primary
source signals shown in Fig.4 (upper graphs). éncinter of Fig.5, it is superimposed from
left to right the PSDs ofS(, S»), (51 ,S3) and §, , S3) measured with the virtual microphone
number one of the array. The mixtures of the PS®s £ S, ), (5; + S3) and
($, +S53) on which will be applied the Bayesian separatbrsources are presented in the
lower plots.

SIMULATED DATA SOURCE SPECTRA
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Fig.5. PSDs of primary source signals shown in the upper plots of Fig.4 (upper) - Superposition of
sourcesignal PSDs (S, S,), (8, ,83) and (S, , S3) (centre) - Artificial mixtures of primary sources
(lower)

7 SOURCE AND MIXING MATRIX PRIOR CHOICE - LIKELIHOO D
DESCRIPTION

It is necessary to defined the prigr§d), p(S) and the likelihoogh(X|A4, S) allowing to
defined the posterior probability Eq.(17) for salyithe Bayesian source separation problem
defined by EqQ.(19) for the data obtained from thpegiment described in Sections 5 and 6
when the acoustic sources are pairwise active.

7.1 Source priors

We have different possible priors for acoustic ses§,, S, andS;, depending on many
design choices, and each combination of these eb@iwing a different algorithm. We define
three cases in order to assess the separationildgpab

11
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7.1.1 Gaussian priors for §

In this first case, we consider that there is necdft knowledge on the three acoustic
sources. In order to represent our state of igri@ame can adopt fdt;, S, andS; to have as
prior law, a Gaussian distribution, with zero-meamg of dispersion Iawszi (i=1 to 3), thus:

1
Si~N(8:]0,02) o exp {—ﬁusin%} (25)
Si

7.1.2 Sparsity prior for §; and Gaussian priors for S, and S,

This second case considers ti§atis mixed either witt§, or S5 It is assumed to be known
that the acoustic radiation &, is performed in a weaker frequency band tBamr S;. The
spectrum of§; can then be considered sparse (i.e. has only fevweano elements) in the
frequency domain. This information can be translaia Laplace density:

S1~L(S1]ay) x exP{_a1||S1”1 } (26)

7.2 Mixing matrix prior

The elements of the mixing matrid reflect the coupling between the sources and
microphones. In a clearly physical situation, thesrix elements depend on the physical
transmission from the sources to the microphonesnBw, we consider the situation where
the mixing process is modelled generically because not well understood. Indeed, in the
experiment described in Section 5, the sourcevemg close to the microphones. Thus, the
attenuation of the source levels, between theisgiom locations, to the microphones, does
not follow the classical geometric law in 1/R (Rt distance between the sources and the
microphones). In order to represent our state mbrignce o, it is assumed that the mixing
matrix has a Gaussian distribution of zero-meanveitida diagonal covariance matif:

1
A~ (410,03) o exp {—F ||A||%} (27)
A

7.3 Likelihood

It is assumed that the noise associated with tperemental measurements can reasonably
be represented as a centered Gaussian process:

1
E~N(E|0,0%) < exp {——ZIIEII%} (28)
20%

The covariance of the noise indicates that eachpoment ofE in Eq.(7) is contaminated
by independent identically distributed random noiBee likelihood can be therefore written
of the form:

1
p(X|A,S,05) < exp {——2 X —ASII%} (29)
20%

12
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8 JMAP SOLUTIONS FOR THE DATA ANALYSIS

We have described in Section 4 the principle of @pémization method for obtaining
generic JMAP solutiond ands. In the following we examine the possible solusiamhich
can be obtained for the mixing cases defined wigh(Z4), by using Eq.(27) for the matrix
prior, Eq.(28) for the likelihood and Eqgs.(25) g@8) depending the source priors considered.

8.1 JMAP : Gaussian priors S

In this first situation, we consider that the th@moustic sourcess;, S, and S5 have
Gaussian priors, defined by Eq.(25). By takingoimiccount the Egs.(27) and (28), the
logarithm of the joint density Eq.(20), becomes:

1 1 1

1
AS) =—|X-A4.5S, — A4S |?+—]Allz3 +—|IS 112 + —|IS; |3
J(4,5) Al k2k 1Sill3 257 || A]l2 20—52,( 1S3 20—521 IMIE (30)

20%
During the iterative process, analytic solutions ased to compute estimatesdotwhere

S, and S; are assumed to be known) 8f (whered and §; are assumed to be known) and
of S; (whered and S, are assumed to be known):

At = XST(SSt+ A,0)
3t = (ALA, + 25, 1) (ALX — ALALS) (31)
| 3 = (AA, +25,1) " (A5X — ALAK,S))

where:

{7k a2 (32)

8.2 JMAP SPARSE : Sparsity prior for §; and Gaussian priors S, and S;

For the third case corresponding to the mixingSgfwith S, or §;. §; has a Laplace
prior EQ.(26) to take into account the sparsityitefPSD. S, and §; has a Gaussian prior
Eq.(25). By taking into account the Eqs.(27) an8l),(2he logarithm of the joint density
Eq.(20), becomes:

1 1 1
J(4,8) = o5 IX = AcSic = AsSillz + o5 I1Allz + 5 ISkll2 + @ISy (33)
of 204 203,

where the subscrigt = 2 or kK = 3 are used whensS, or S5 is respectively active.

13
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According to EqQ.(22)), the estimates 4fand S can be obtained using a three steps
algorithm ALS [19]:

(= argmin (X~ A8, ~ 45,1 + 21ATE)
A
’S‘Il( — argmin { ”X — AkSk - A151||% + /151{”5']{”% } (34)

Sk
,SA‘{ = argrr;in {||X — Ay Sy —A1S1||§ + 411181111 }
1

where:
( o'bg
/1A —_ _2
04
ae = %
Sk = 2 35
§ =0z (35)
_ 2
M = ay0%

\

During the iterative process analytic solutions @sed to compute estimatesdi{where
S, or S5 is assumed to be known) aisg or S5 (whered and §; are assumed to be known):

At = XST(SSt + 2,1)"

i = (AL A, + 25,1) (AL — ATAS,) (36)

In contrast, it derives from the non-differentid@yilof the penalty functioi,||S,||; in the
objective function/(S;) = || X — 4,8, — A;S,113 + 1,1|S1]l; deriving from Eq.(33), there
are no closed-form solutions fp€S;) that can be used in the update rule $gr Thus, we
need to use an optimization scheme for this sté@ I; norm regularized least squares
LASSO [20] that seeks the minimizer ff§,) is chosen in this study because it provides the
best performance in the sense of the sparsity/memsumt tradeoff.

8.3 JMAP SPARSE : Sparsity prior for S, and Gaussian for S3

This last case is quite similar of the one examimedection 8.2 but here, since it is
applied a sparsity prior fos, and a Gaussian one fd#;, and the subscripts andk are
replaced with2 and3 respectively in Egs.(33), (34) and (35).

Again, due to the non-differentiability of the pégafunction 4,]|S,|l; in the objective
function function J(S;) = || X — 4,8, — 4355115 + 1,11S,]l, , there are no closed-form
solutions forj(S,)that can be used in the update rule ®r Thus, we need to use an
optimization scheme for this step done with regméat least squares LASSO [20].

14
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9 SEPARATION RESULTS

The Bayesian source separation approach presengzttion 8 is applied here on the data
recorded during the experiment described in Sediioln the first part, it is examined the
separation results when the mixtures are perforar@éicially (see Section 6) and in the
second part when they are measured directly withatihay of microphones (see Section 5).
We consider for both kind of mixtures that the pifor the mixing matrix (Eq.(27)) and the
likelihood (Eq.(29)) are Gaussian. The cases 1dbsdurce priors defined in Section 7.1 will
be studied for the observations mixed artificiallhile only cases 2 and 3 will be considered
for the mixtures directly measured.

9.1 Separation results of real data mixed artificia  Ily

The PSD observations pairwise mixed artificiallpwer plots in Fig.5) are unmixed in
Fig.6, based on Egs.(30), (31) and (32), wifh= 800, 4s, = 0.2 andAs = 0.001 (the
subscriptsk, I are defined in Eq.(24)). The background noise mesnhigh. Nevertheless, the
frequency radiation of the tonal source is weltiested in the PSD of§; when it is mixed
with S, or S5. In contrast, the separation result concerningntivgure (S, +55) is not
totally well done.
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Fig.6. Case of observations mixed artificially - Unmixed PSDs (S, + S5), (S; + S3) and (S, + S3)
using Gaussian priorsfor §;, S, and S5.

It is examined the unmixed PSDs of,(+ S,) and (S;+ S3) when a sparsity prior is
affected to§; and Gaussian one 8, or S; (here 1, =800 , A5, = 0.3 andAs, = 1.65,
the subscriptsk = 1,1l = 2 or 3). The interest of sparsity prior clearly appears the
separation results shown in Fig.7. Only a peak kH# is found in the estimatd; of the
PSD tonal sources;. Moreover, the shapes of the original source spe§; and S; are
correctly restored ir§, and S5 respectively.
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Fig.7. Case of observations mixed artificially - Unmixed PSDs (§; + S,) and (S, + S§3) using
Laplace prior for §; and Gaussian prior for S, and S;.

The unmixed PSDs ofS, +S;) (with 1, =800, 4;, = 0.3 andAs, = 1.65, k=2 and
[=3) with a sparsity prior affected t§, and a Gaussian t§; show again, the interest of

sparsity prior in Fig.8. The frequency supports keHeoth sourceS, and S; are emitting are

well restored and their original PSDs shapes too.
SPL

0 2 4 6 8 10 12 14
Frequency (kHz)

Fig.8. Case of observations mixed artificially - Unmixed PSD (S, + S3) using Laplace prior for §,
and Gaussian Prior for S;.

9.2 Experimental results

The Bayesian source separation are applied ins#ggon to the mixturesS +S,), (S,
+S§3) and (S,+S3) measured during the experiment described in @e&i The reference
signalsRef_1, Ref_2, and Ref_3 shown in Fig.9 (upper plots) considered here are n
filtered compared to the case studied with thdieigl mixtures (see Fig.4).The consequence
is that the histogram of; seems to be characterized by a Gaussian distibaind this
remark can be applied for the histogramsSgf and S5 (Fig.9) center graphs). The scatter
plots of the joint distributions (Fig.9 lower gragtpresent a distribution of two independent
Gaussian signals forsg, S,), (S, S3) and (S, S3).
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REAL DATA SOURCE TIME SIGNATURES
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Fig.9. Real data - Primary sources measured by Ref_1, Ref_2, and Ref_3 microphones (upper);
Histograms of the primary sources (centre); Joint distributions of the primary sources (lower)

It is presented in the upper plots of Fig.10 thecsa of the reference source signals. As it
was foreseeable, the PSD of the sinus signal s meisier than its filtered version presented
in the upper plots in Fig.5. The PSDs &, ( S,) , (5§, $3) and (S,, S3) measured with
microphone 1 of the array are superimposed fromtdefight in Fig.10 and the mixtures of
the PSDs of §, +5,), (S; +S3) and (S,+S3) presented in the lower graphs.
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REAL DATA SOURCE SPECTRA
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Fig.10. Real data - PSDs of the reference source signals measured with a microphone of the array
(upper) -PSDs of reference source signals superimposed pairwise (centre) - PSDs of the mixture

when the loadspeakers where pairwise active (lower).

The separation results obtained with real data dhigairwise artificially, presented in
Section 9.1, have clearly demonstrated the inteesise sparsity priors when we are in
presence of a primary source with an acoustic eomss a frequency band much narrow than
those of another primary source. It is why, onlg tase 2 of Section 7.1 will be considered
here. The priors for the mixing matrix (Eq.(27)dahe likelihood (Eq.(29)) are again chosen

Gaussian for the reason already explained in Secffol. The unmixed PSDs of§{ +S5)

and (§; +S3) and (S,+ S3) presented in Fig. 11, show that the Bayesiancgaeparation

approach is quite relevant in the acoustic sigdafixing.
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Fig.11. Real data - Unmixed PSDs (S + S,), (S; + S3) with Laplace prior for §; and Gaussian
prior for S, and S5; Unmixed PSD (S,+ S3) with Laplace prior for S, and Gaussian prior for S5 .

10 CONCLUSIONS

In this paper, we considered the source separptigmlem in a Bayesian framework. We
compared the separation results involving a tooafce, a broadband source and a wideband
one mixed pairwise, based on JMAP. For the broadiisaggnal, we use a Gaussian prior and
for very narrow or tonal we use a Laplace priom. €ach case, first the expression of the joint
posterior lawp(A4, S|X,0) is obtained and then optimized via an alternatipgmization
algorithm. The main conclusion are:

- first, the Bayesian approach could be used efiity on simulated and real data,

- second, it that using appropriate priors (Gaus$or the broadband and Laplace for the
narrowband or tonal) greatly improve the sepanatesults.
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