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ABSTRACT 

Beamformers are a class of powerful and elegant algorithms for detecting, tracking 

and imaging sources and targets using phased arrays of sensors.  From one point of view 

the beamformer is sampling the incoming wavefronts at the array face and forming an 

angle of arrival for these wavefronts.  In a homogeneous medium the angle of arrival can 

be equated to a bearing line that points in the direction of sources or scattering targets.  

The presence of refractive effects in the propagation media can alter the angle of arrival 

calculation and cause multiple images even in the absence of boundary reflections.  This 

presentation is divided into three parts: (1) The presentation and discussion of a forward 

propagation models for modeling the acoustic signals seen (heard) by the phased array, 

(2) A discussion of systematic effects on beamformer prediction caused by the refractive 

properties of the environment, and (3) Methods for compensating for these effects to 

separate the true sources and scatterers from the medium in the beamformer image.  We 

focus attention on modeling these effects in stationary layered media. 

 

 

1 INTRODUCTION  

Phased arrays are used in a variety of applications.  Active arrays are used to locate 

objects based on pulse echo data, while passive arrays are used to locate sources of sound in 

space [1,2,3].  With the aid of visual data, passive arrays can be used to identify sound sources 

by associating a peak in detected acoustic power with an object in the space.  The beamformer 

is a signal processing technique that uses array data to locate targets or sources in space [4].  

The technique uses relative differences in phase, or arrival time, between members of a group 

of sensors.  The output of these algorithms is a look direction, a vector pointing in the 

direction of a potential source.  When propagating through homogeneous media wavefronts 

propagate along straight line paths.  In the presence of refractive deviations, acoustic signals 

will tend to propagate along paths that bend toward lower sound speeds and along the 

direction of fluid flow.  This will cause pulses received by an array to be misaligned relative 

to their expected direction of arrival.  In this paper we discuss modeling the beamformer 
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performance when refractive effects are present in the environment and methods for 

correcting these effects in the standard beamformer output.   

Methods for correcting beamformers or compensating for certain environmental effects 

are well known.  The use of a strong source or sources to measure components of the cross 

spectral density matrix can be used to correct errors caused by random fluctuation in the 

propagation media.  This method, now well known in acoustic beamformer signal processing, 

was inspired by a similar technique used in radio astronomy, which uses a bright star as a 

calibration source for enhancing the signal from weaker stars in the field of view.  In this 

paper we are mainly concerned with the effect of static changes caused by the refractive 

properties of the environment.  In this case refractive changes in the environment cause 

distortion of ray paths and wavefronts thus violating some of the main assumptions used in 

the development of beamformer algorithms and analysis of their limits.  Due to a theoretical 

equivalence between the beamformer and a Fourier transform one can think of the 

beamformer output as an image of the potential sources and/or targets present.  The impact of 

these aberrations on any array of detectors is that whatever data is processed leads to a 

distorted picture of the source, much like looking through the bottom of a drinking glass and 

seeing objects in a room morphed to the contours of the glass.  This phenomenon and the 

analysis of its effect on phased array processing derives inspiration from another phenomenon 

encountered in astrophysics, gravitational lensing.  As light travels from distant stars to 

detectors on or near the earth its propagation path is distorted by the gravitational fields of 

massive objects.  The distorted paths lead to incorrect determinations of potential sources.  

Some common phenomena associated with this effect are Einstein’s Ring and Einstein’s 

Cross, wherein a single point source appears to be a bright ring or sequence of points in a 

cross formation. 

In general relativity light travels along a special class of curves known as null geodesics, 

curves of zero length in four dimensional space-time.  This is also a feature of the 

bicharacteristics of any hyperbolic partial differential equation.  It has been explicitly 

demonstrated in acoustics that ray paths are in fact null geodesics of a pseudo Riemannian 

manifold where the metric components of the manifold are related to the local sound speed 

profile and the wind vector [5,6].  Thus, the phenomenology of gravitational lensing and the 

types of analysis and corrections employed carry over to the field of acoustics and optics in 

refractive media (or any other wave propagation governed by a hyperbolic PDE).  This 

machinery has been applied to acoustics to produce generalizations of paraxial ray trace 

procedure and Gaussian beam equations in the presence of moving fluids with time 

dependence [7,8,9,10]. 

The modeling of signal propagation has a twofold purpose.  The first is to provide an 

accurate model of what the array will actually see, a ground truth, for testing the performance 

of existing beamformers.  The second is that these models, if accurate enough, can be used to 

generate more sophisticated numerical Green’s functions for use in a matched field filter 

should a classic beamformer prove to be too difficult to correct.  Thus in this sense a fairly 

good propagation model is a good investment.  This paper investigates three specific topics, 

(1) the modeling of propagation through a refractive environment, (2) the inclusion of this 

modeling in standard beamformer performance prediction studies, and (3) the development 

and application of a model based correction procedure that can help remove environmental 

effects from a beamformer output.  The original abstract mentioned focusing on layered 

media but we present more general cases with three dimensional refractive volumes as well. 
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2 THE PROPAGATION MODEL 

Several numerical techniques are available for modeling propagation from source to 

receiver.  For dealing with refractive media a dynamic ray trace procedure based on 

differential geometry was developed.  This procedure consists of a 4-dim ray trace, which 

solves for 3-dim position and travel time, and transport equations that solve for the 2-dim 

geometric spread along each ray path.  A two point boundary value approach is used to find 

all multipaths between each source receiver pair.  Boundary reflections are taken into account 

by resetting initial conditions for the next step in the procedure, and caustics located by 

checking for zeros in the geometric cross section.  Geometric spread is used to estimate the 

field amplitude along each ray path and for points close to a caustic a field expansion is used.  

For completeness the equations used are provided below and the reader is directed to the 

reference literature for more details [7]. 

Points in space-time are labeled x , μ = 0,1-3, where μ = 0 is reserved for time, t, and 

indices 1-3 indicate spatial coordinates.  Equation (1) is the complete dynamic ray trace 

procedure in 4-dim.  There are 20 degrees of freedom not including constraints.  The vectors 

IY , I = 1, 2, measure the geometric spread in two independent directions, 


Iê , at each point 

along each ray.  The internal basis vectors 


Iê  are used to define coordinate directions in the 

tangent plane of the wavefront. 
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The following have been introduced, 
g ( 


 gg ), 



 x , �̇� = 𝑑𝑋/𝑑𝜆, and the 

Einstein summation convention is used.  The effects of the environment are contained in the 

following quantities.  Equation (2) is the Riemann curvature tensor and governs the 

focusing/defocusing properties of the environment, Eq. (3) is the Christoffel symbol of the 

second kind and governs the ray path geometry and Eq. (4) is known as the acoustic metric 

and contains the environmental parameters affecting ray path motion.   

 




















 R  (2) 

 

)(
2

1





 gggg   (3) 

 




















33

22 )(

id

c
g

T




 



 (4) 

 

Examples of ray traces based on the above are provided in Fig. 1 and Fig. 2.  It should be 

noted that several examples of sound speed and wind profiles exist for which there are exact 
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solutions to the ray and field equations.  These make great toy models for illustrating the 

effects of the medium on signal propagation.  For layered media the full set of dynamic ray 

trace equations can be integrated to provide a first order set which is equivalent to Snell’s law 

in a moving fluid medium. 

 

 
Figure 1. Sample ray trace for a linear sound speed and ground reflection. 

 

 
Figure 2. Sample ray trace for in the presence of the Munk profile with periodic range 

dependence. 

 

3 ARRAY GEOMETRY 

The array model consists of a collection of identical sensors distributed in a plane.  For the 

purpose of this presentation we consider each sensor to be ideal, point-like and omni-

directional.  The inclusion of amplitude response functions depending on frequency and angle 

of arrival are straight forward but obfuscate the direct relationship between the environment 

and the beamformer output, which is the primary concern of this paper.  Table 1. is a list of 

basic array geometries and their parameters for modeling purposes. 

 

 

Range (m)

H
e
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h
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)

Sample ray trace, linear SSP with ground reflection

Propagation In the Munk profile with periodic range dependence
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Table 1. List of array geometries and their parameters 

Array Name Parameters 

Line L, d 

Circle R, d 

Rectangle Lx, Ly, d 

Spiral Rmax, d 

Dougherty Spiral R0, ν, Rmax, d 

Co-Array 
𝑟𝑖 − 𝑟𝑗, {𝑟𝑘} are the elements 

of any existing array. 

Random Array 
Remove M < N elements 

from any existing array. 

 

Figure 3. shows samples of several of these arrays.  Table 2. lists the parameters used as a 

description of each subplot in Fig. 1.  

 

Table 2. Modeling parameter for the example arrays in Fig. 1. 

Figure 1 Array type Parameters 

(a) Circle R = 0.5m, d = 0.05m, N = 63 

(b) Co-Array 
Seeded with circle with R = 0.2m, d = 0.05 

Total elements N = 1407 

(c) Square Lx = 1m, Ly = 1m, d = 0.05, N = 441 

(d) Random Array 

Starting with the square array in 1 (c) 

make x = rand(411,1) and map x > 0.5 to T 

x ≤ 0.5 to F, remove all F elements, N = 217 

(e) Spiral Rmax = 0.5m, d = 0.05m, N = 101 

(f) 
Dougherty Spiral R0 = 0.01m, ν = 1, Rmax = 1m, d = 0.05m, N = 

32 

 

We treat the array as a set of field points for sampling the propagated signals present in the 

medium.  Several array geometries were looked since it is known that the sensor placement 

will introduce artifacts into the beamformer output. 
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Figure 3. Sample array designs for sampling field data. 

 

4 BEAMFORMER ALGORITHMS 

Just as array geometry produces artifacts in the signal processing the specific choice of 

processing algorithm will affect the output of the array system [11,12,13,14,15].  The starting 

point for our discussion is the standard delay-and-sum (DAS) beamformer.  All processing 

and field modeling was done in the frequency domain using complex exponentials for 

beamformer weights, e.g. 𝑤𝑛 = exp⁡(𝑖𝑘𝑤�̂� ∙ 𝑟𝑒𝑙), where we define the wave number for the 

carrier frequency, 𝑘𝑤 = 2𝜋𝑓/𝑐, the look direction, �̂�, and the location of the array elements 

(a) (b)

(c) (d)

(e) (f)



6th Berlin Beamforming Conference 2016                            Bergman 

 

 

7 

 

relative to the mean sensor location, 𝑟𝑒𝑙.  The weights were normalized so that ∑ 𝑤𝑛𝑤𝑛
ϯ𝑁

𝑛=1 =
1. 

 

𝑏(�̂�) = ⁡ ∑ 𝑤𝑛
ϯ
𝑆𝑛𝑚𝑤𝑚

𝑁

𝑛,𝑚=1

 (5) 

 

In Eq. (5) the matrix S is the cross spectral density matrix formed by taking correlations 

between all pairs of array element signals.  The beam pattern is evaluated on a grid of values 

(referred to here as a scan grid) that sample the look direction, ⁡�̂�.  The beam dependence on 

look direction comes from the weights and each value can be interpreted as the likelihood that 

energy is incident on the array from direction �̂�.  The scan-grid is defined with the center of 

the grid on the equator of a sphere with the array placed at the center of the sphere, 

appropriate far field assumptions being made.  The beam power pattern is then truncated by a 

minimum desired signal threshold and the resulting data scanned for peaks, local maxima, 

using interpolated data to locate true maxima more accurately.  The angular coordinates of 

each peak, (θj, φj), are then taken to be the bearing of a detected signal.    

It is fairly easy to interpret what a DAS beamformer is doing.  The weighting functions 

can be thought of as a basis set for a function space, similar to a Hilbert space in quantum 

mechanics or a mode expansion.  When the array data is passed through the beam former 

algorithm it is essentially measuring how much the data is similar each basis function.  

Properly normalized the strength of the peak in a beamformer output can be interpreted as the 

likelihood that the data matches a particular basis function.  When pure phases are used as 

weights the data is decomposed into plane waves coming from infinity.  For targets that meet 

the far field approximation relative to the array a maximum value for a given basis may be 

interpreted as evidence that there is a source at that look direction.  For an active array the 

time to detect a return of a pulse would indicate target range.  Table 3. below lists the other 

beamformer algorithms investigated in this study. 

 

Table 3. Beamformer algorithms considered in this paper 

List of beamformer algorithms investigated 

Delay and Sum (DAS) 

Maximum Likelihood Method (MLM) 

Maximum Entropy Method (MEM) 

 

In Fig. 4 we present examples of the DAS beamformer for three different array geometries.  

Figure 5 illustrates the difference between the DAS and MEM beamformers for three sources 

in a motionless environment with a constant sound speed.   
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Figure 4. Samples of Beamformer patterns for a square (top), circular (middle) and spiral 

(bottom) array for a frequency of 3kHz.   
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Figure 5. Example of DAS and MEM beamformer outputs plotted relative to the array face.  

In each case three sources are present. 

 

5 PERFORMANCE PREDICTION 

 

An example of the end to end simulation is provided in Fig. 6.  The beamformer along 

with appropriate signal location and windowing functions provides the front end of a more 

sophisticated signal processing chain.  From the beamformer output we apply a signal 

threshold and peak finder algorithm.  This is designed to locate individual bearing lines which 

are likely to correlate to a source or target.  Figure 6 presents a view of the complete end to 

end model showing source, array, propagation of the field, resulting beamformer output and 

bearing line calculation. 

 

 
Figure 6. End to end simulation of source location using a phased array.   

Sample DAS Beamformer Sample MEM Beamformer
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In a flat motionless environment the beamformer will locate a source or sources provided that 

they can be resolved for the frequency and array parameters of the system and aliasing does 

not occur.  In the presence of refractive effects array bearings cannot be expected to align with 

sources or targets [15].   Figure 7 and Figure 8 illustrate these effects for a linear SSP with 

and without ground reflection. 

 

 
Figure 7. Example of beamformer output and bearing for a source in a flat environment (left) 

and in the presence of a linear SSP (right).   

 

 
Figure 8. Similar to the case presented in Fig. 7 with the addition of a hard ground reflection 

at z = 0. 

 

6 IMAGE CORRECTION AND THE THIN LENS EQUATION 

The lensing equation relates the observed bearing (or angle of arrival) to the straight line 

path from source to receiver [16,17].  This is a deceptively simple looking equation.  Figure 9 

illustrates the parameters in the equation. 

 

Sample scene with c = constant, array, source, 

beamformer surface plot+ look direction

Sample scene with c’ = constant, array, source, 

beamformer surface plot+ look direction

ξ = 1.0ξ = 0
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𝜷 = 𝜽 −
𝐷𝑑𝑠
𝐷𝑠

�̂�(𝝃) (6) 

 

In Eq. (6), 𝜷 is the unperturbed angle of arrival, 𝜽 is the observed angle (with environmental 

effects factored in) and the last term contains all the refractive properties of the environment 

in the term �̂�(𝝃).  The lensing factor depends on the transverse deflection parameter, 𝝃 =
𝐷𝑑𝜽.  The deflection term is determined by the local sound speed and wind vector integrated 

along the ray path.  Hence direct application of this equation is challenging.  We are 

concerned with two cases: 1) when a propagation path contains finite, bound regions causing 

deflection and 2) when the refractive effect is weak over the total distance from source to 

receiver.   

 

 
Figure 9.  Definition of lens equation parameters. 

 

The lensing factor can be related to the local properties of the medium.  Starting from the 

ray equation, in a suitable representation, the lensing angle is defined as the integral of 𝑑�̂�/𝑑𝑠 

along the ray path.  Hence, by definition �̂�(𝝃) = ∆�̂�.  This illustrates the use of the 

approximation that the rays be near the optical axis.  In this representation the tangent vector, 

�̂�, is a unit vector in 3-dim.  From the ray equation we have the following expression for the 

lens angle.   

 

�̂�(𝝃) = ∫ ∇⃑⃑⃑⊥𝜑𝑑𝑙 + ∫ �̂� × (∇⃑⃑⃑ × 𝜓�⃑⃑⃑�)𝑑𝑙 (7) 

 

In Eq. (7) we introduce the operator ∇⃑⃑⃑⊥≡ ∇⃑⃑⃑ − �̂�(�̂� ∙ ∇⃑⃑⃑) and define the following scalars, and 𝑐0 

is a reference sound speed. 

 

Lens plane

Optical Axis

Unperturbed ray from source

Bent ray path arriving at aperture

True bearing
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𝜑 = −
𝑐0
2 − 𝑐𝑟

2 + 𝑤2

𝑐0
2 + 𝑐𝑟2 − 𝑤2

 

 

𝜓 =
2𝑐0

𝑐0
2 + 𝑐𝑟2 −𝑤2

 

 

Starting from the definition of the deflection angle and the potential functions we work out the 

deflection explicitly as a function of the environmental fields.  The gradient of the potentials 

is, 

 

∇⃑⃑⃑𝜑 = −𝑐0∇⃑⃑⃑𝜓 =
4𝑐0

2(𝑐𝑟 ∇⃑⃑⃑𝑐𝑟 − 𝑤𝑘 ∇⃑⃑⃑𝑤𝑘)

(𝑐0
2 + 𝑐𝑟2 − 𝑤2)2

⁡. 

 

Continuing the derivation in the general case is not very illuminating.  However we may 

apply some approximations that are valid in many real life situations.  The first will be that 

the local sound speed is described by 𝑐𝑟 = 𝑐0(1 + 𝜀𝑓(𝑟)), with 𝜀 ≪ 1.  The second 

assumption is that the local wind speed is small compared to the sound speed, i.e. low Mach 

number.  Since deviations in local sound speed are small we define the Mach number relative 

to the reference sound speed, �⃑⃑⃑� = �⃑⃑⃑�/𝑐0.  Now we focus on expanding the potential gradient 

in powers of 𝜀 and M. 

 

∇⃑⃑⃑𝜑 =
4 ((1 + 𝜀𝑓)𝜀∇⃑⃑⃑𝑓 − 𝑀𝑘 ∇⃑⃑⃑𝑀𝑘)

(1 + (1 + 𝜀𝑓)2 −𝑀2)2
≈ (1 − 𝜀𝑓)𝜀∇⃑⃑⃑𝑓 − 𝑀𝑘 ∇⃑⃑⃑𝑀𝑘 (8) 

 

In Eq. (8) we have retained only terms up to second order in the small quantities, 𝜀 and �⃑⃑⃑�, 

dropping terms such as 𝜀𝑀2, 𝜀2𝑀 and 𝑀3 etc., and the summation over k is implied.  In 

general we do not consider the gradient of small quantities to be of the same order of 

smallness.  However, under the assumption that derivatives of small quantities are likewise 

small we see that to lowest order ∇⃑⃑⃑𝜑 ≈ 𝜀∇⃑⃑⃑𝑓.  Applying the same approximations to the 

second integral and keeping only first order terms in small quantities leads to only one 

surviving term, �̂� × (∇⃑⃑⃑ × �⃑⃑⃑�). 
 

�̂�(𝟏)(𝝃) = 𝜀∫ ∇⃑⃑⃑⊥𝑓𝑑𝑙 + ∫ �̂� × (∇⃑⃑⃑ × �⃑⃑⃑�)𝑑𝑙 (9) 

 

Second order effects can be worked out, and are provided below. 

 

�̂�(𝟐)(𝝃) = −𝜀2∫𝑓∇⃑⃑⃑⊥𝑓𝑑𝑙 − ∫𝑀𝑘 ∇⃑⃑⃑⊥𝑀𝑘𝑑𝑙 − 𝜀∫ �̂� × (∇⃑⃑⃑ × 𝑓�⃑⃑⃑�)𝑑𝑙 (10) 

 

We present these terms to make the point that the wind effects will couple to the sound 

speed, as is well known from a study of the paraxial ray equations.  For weak environmental 

effects the wind and sound speed effects can be approximately considered additive.  This 

makes the application of the lens equation very simple.  Finally we note that for a layered 



6th Berlin Beamforming Conference 2016                            Bergman 

 

 

13 

 

media, 𝑐(𝑟) = 𝑐0(1 + 𝜀𝑓(𝑧)), ∇⃑⃑⃑⊥𝜑 ≈ 𝜀𝑓′(𝑧)�̂�⊥ to lowest order.  It should be noted that this 

expression generalizes for a layered media in direction �̂� by replacing �̂� with �̂� and z with the 

appropriate linear combination of Cartesian coordinates.  The full deflection angle is 

calculated by integrating along the unperturbed path with an orthogonal impact vector added, 

i.e. by evaluating the integrand 𝑟 = 𝑙�̂� + 𝜉, �̂� ∙ 𝜉 = 0 and integrating along l.  

 

We looked at several model environments.  Some are reasonable representations of 

physical situations while other are more of thought experiments designed to illustrate the use 

of the lens map for correcting array output.  These are listed below. 

 

Table 4. Model environments 

Description Profile functions Eqn. No. 

Linear SSP 𝑐 = 𝑐0(1 + 𝜀𝑧) (11) 

Step function 𝑐 = 𝑐0 + 𝑐1𝑢(−𝜎𝑧) (12) 

Gaussian 

refraction 
𝑐 = 𝑐0 (1 +∑ 𝜀𝑛

𝑁

𝑛=1
𝑒𝑥𝑝 (−

(𝑟 − 𝑟0)
2

2𝜎𝑛2
)) (13) 

Laminar wind 

region 
�⃑⃑⃑� = 𝑤𝑦(𝑧)𝑢(𝜎𝑥)𝑢(−𝜎(𝑥 − 𝑥0)) (14) 

 

The step function, u, is defined as 𝑢(𝜎𝑥) = 0.5(1 + tanh⁡(𝜎𝑥)), and approaches a jump 

discontinuity as 𝜎 → ∞.  For these choices the lens correction factor can be evaluated by hand 

as a function of 𝜉, usually in closed form involving special functions.   

 

7 DISCUSSION  

 

The complete beamformer output contains artefacts from the array geometry and signal 

processing choices that are not the result of propagation.  Applying the lens correction to the 

entire beamformer output would morph these features unnaturally.  Applying the lens 

correction to the bearing angles provides good results for aligning the acoustic bearing with a 

sound source.  The procedure works for multiple sources when they can be resolved by the 

array and are not too close to endfire.  It should be noted that the lens correction can be 

extended to multiple refractive obstacles by applying the procedure recursively from one lens 

plane to the next treating the output on one lens and the source or input to the next.  This was 

investigated in simulated experiments using Eq. (13) with several refractive pockets.  

In contrast to a full matched field filter the lens approach allows one to use the standard 

free space Green’s function or pure phase in a classic beamformer and apply a reasonable 

correction to the output.  While this presentation focused on modelling and simulation the 

author has used this technique in active phased array processing.  For such applications 

metrology equipment was deployed in the test facility and interfaced with the array processing 

unit. 
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