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ABSTRACT 

Using classical beamforming methods for localizing unducted tonal turbomachinery 

noise sources leads to coherent tonal noise sources being localized to their Mach radii rather 

than their true noise source locations. For certain configurations, the interaction tone noise 

sources will be localized to a Mach radius of zero. In such instances, the contributions from 

the rotor, the stator, and even the motor to the noise source appearing on the axis of a 

beamform map cannot easily be distinguished from one another. Therefore, the 

contribution of each component to the resulting noise source cannot be determined, and 

steps cannot be taken toward mitigating these noise sources. Preliminary investigations 

have been conducted and published, taking steps toward separating these apparent noise 

sources into their components. This investigation presents further information which is 

useful in determining the contribution from each rotor blade, each stator blade, and the 

motor to the beamform peak appearing on the axis. The long term goal of the investigation 

is to understand the currently available beamforming results of coherent rotating noise 

sources, gain more information from their beamform maps, and use the newly attained 

knowledge in order to develop beamforming methods for use in the investigation of 

coherent rotating noise sources. 

1 INTRODUCTION 

As the number of turbomachinery applications surrounding us in our everyday lives is 

increasing, and as competition in the industry is also very strong, the demand for 

turbomachinery of high efficiency and low noise is on the rise. In order to design such products, 

and therefore have an edge over the competition, engineers are in need of tools which can help 

them localize and understand turbomachinery noise sources, and therefore eliminate them at 

the root of the problem. Phased array microphones and beamforming technology provide a 

means by which researchers and engineers could gain a vast amount of information regarding 

where turbomachinery noise sources are located and which noise sources are the most 

dominant, but first the beamforming results need to be better understood and beamforming 
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methods need to be further developed in order to overcome the difficulties associated with 

beamforming for turbomachinery applications. 

There are many difficulties associated with this task. First of all, the noise sources can be 

either broadband or tonal. This in itself does not cause too much difficulty, as long as it is kept 

in mind while processing the results. When taken into consideration that the noise sources are 

also rotating, are distributed along multiple radial arms (rotors or stators) in the same radial 

positions, many of the tonal noise sources are of relatively low frequency and also coherent, 

most turbomachinery applications require a ducted system, turbomachinery produces a pressure 

rise and hence a windy environment, a large number of noise sources are concentrated in a small 

area, and background noise is also significant, the problem becomes very complex. 

With regard to the difficulties associated with the beamforming of turbomachinery, the 

following paragraphs provide a glimpse into the advancements which have been made in this 

area in order to determine the state of the art and to show which areas require further 

development. Traditional beamforming methods, such as the classical frequency-domain based 

Delay & Sum (DS) method [1], are better suited to the investigation of stationary noise sources. 

Advancements to the basic beamforming methods have provided a means of investigating 

moving sources, including rotating sources [2-4]. These methods are very useful in identifying 

rotating incoherent noise sources, and therefore play an important role in localizing many 

broadband noise sources and some tonal noise sources. If the frequencies are high enough, then 

the noise sources can be pinpointed to various sections of the individual airfoils. From among 

these methods, this investigation applies the Rotating Source Identifier (ROSI) method [2]. 

With regard to our intended use, the drawback of these methods is that they are not capable of 

identifying coherent noise sources, such as interaction tones. Another drawback of the ROSI 

method is that it is formulated in the time-domain, and therefore advanced beamforming and 

deconvolution methods cannot be applied in the rotating reference frame when applying this 

method. 

If the frequency under investigation is relatively low (as to be expected for a typical rotation 

speed of approximately 3000 RPM), advanced beamforming methods can be applied in order 

to improve the resolution of the beamform maps. This is necessary, since the physical size of 

these machines is often relatively small and the number of noise sources located within that 

space is large. There are many beamforming methods that fall into this category, but it is the 

opinion of the corresponding author that these methods need to be handled with care, as they 

are usually designed for a specific type of problem and can also trick the user into 

misinterpreting the results presented in the beamform maps if used incorrectly. It should also 

be mentioned that many of these advanced beamforming methods work in the frequency 

domain, while some of the methods that put the results into a rotating reference frame work in 

the time domain. For our purposes, further research will need to focus on prescribing a 

beamforming methodology which can help in separating apart and localizing low frequency 

tonal and broadband turbomachinery noise sources without losing information or leading to the 

misinterpretation of the results. 

Turbomachinery interaction tones are most often coherent, since the same noise source 

appears on each of the rotor or stator blades in a given turbomachinery stage. The phase 

difference between the sources depends on the number of rotor and stator blades. These 

coherent noise sources are therefore often evenly distributed around the circumference of the 

turbomachinery under investigation, at a given radial position. The noise source on the rotor is 

rotating around the axis, while the noise source on the stator is stationary in an absolute 

reference frame and vice versa in a rotating reference frame. It has been shown in [5] that 
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coherent noise sources of unducted turbomachinery will be localized to their apparent noise 

source positions rather than their true noise source positions. These apparent noise sources are 

localized to the so called “Mach radius” or “sonic radius”, and can be calculated from the theory 

presented in [6]. The reason for this interesting occurrence is that the wave fronts of the 

individual coherent noise sources add up constructively and destructively and form newer wave 

fronts that appear to propagate from an apparent noise source which is located at the Mach 

radius, when examined using beamforming technology [5]. It was shown in [7] that there are 

certain worst case scenarios where the noise sources of a rotor, a stator, and a motor can all be 

localized to the same Mach radius, which is located on the axis. This investigation showed that 

in evaluating the beamform maps of coherent turbomachinery noise sources, care has to be 

taken in order to accurately evaluate the noise sources which are located on the beamform maps 

as the coherent noise sources (rotating or stationary) will all be localized to their Mach radii. In 

[8], steps were taken toward determining the contribution from each individual coherent noise 

source with the help of an equation which is analogous to the basic acoustic equation for adding 

levels. It was determined that in both the rotating as well as absolute reference frame the 

amplitude of the resulting apparent noise source will be the same. The above presented 

investigations have presented a theory which explains where coherent unducted 

turbomachinery noise sources will be located [5, 7], and how to determine the contribution from 

each individual equal strength source once the motor, rotor, and stator noise sources are 

separated from one another [8], but it is yet to be presented how the motor, rotor, and stator 

noise sources are to be separated from one another and how to determine the radial positions of 

the noise sources, which is key. 

The literature provides information regarding ducted phased array microphone systems and 

beamforming methods [1, 9-13]. As in the investigation of coherent turbomachinery noise 

sources, these investigations need to take into account acoustic modes (in this case, duct 

modes), which are key to the understanding of the beamforming results. Though most unducted 

applications dealt with in the previous paragraphs can be set up in a manner which makes it 

possible to avoid difficulties resulting from airflow passing over the microphones, placing the 

microphones in the ducts requires that extra care be taken in setting up, executing, as well as 

processing the results [1]. Though the research presented in this investigation is for unducted 

turbomachinery, both cases deal with acoustic modes, and it is hoped that what is learned from 

unducted turbomachinery will help in further developing the state of the art of beamforming 

technology with regard to ducted turbomachinery systems and vice versa. 

The above stated advancements in the state of the art of beamforming for turbomachinery 

applications, as well as many others, are continuously bringing us closer to fully understanding 

turbomachinery noise source maps, but many of these areas have not yet been fully understood. 

One such area is that of beamforming coherent turbomachinery noise sources which have a 

Mach radius of zero, which is further investigated here. Though it has been shown that these 

noise sources are localized to their Mach radii [5, 7], and that once localized to their apparent 

noise sources, the contribution from each individual noise source on a rotor or stator blade can 

be determined [8], it has yet to be shown how the 3 noise sources (motor, rotor, and stator) can 

be separated from one another and how the radial positions of the noise sources can be 

determined. This investigation looks at preliminary test cases regarding the beamforming of 

coherent turbomachinery noise sources which are localized to a Mach radius of zero with the 

help of simulated noise sources, introducing a method for determining the true radial position 

of the noise sources. One might wonder why such a large amount of effort is invested in 

determining the true location of noise sources localized to the axis instead of dealing with cases 
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where the Mach radius has a value larger than zero, or cases where the true noise source position 

can be determined from the measurements. From one point of view, this is a worst case scenario, 

where three possible noise sources (including coherent noise sources) can be localized to the 

same point, making it exceptionally difficult to separate the one from the other and then 

determine its true radial position. From another point of view, preliminary results of counter-

rotating open rotor research conducted by the authors has shown that designing these unducted 

propulsion systems to have a Mach radius of zero could prove very useful and important, but 

this topic is beyond the scope of the present investigation. 

2 INVESTIGATED TEST CASES 

This investigation looks at simulated test cases for a turbomachinery stage which consists 

of a rotor, guide vanes, and the motor which drives the rotor. The reason for using a synthetic 

test case is that it allows for the investigation of each noise component independently from the 

others in a controlled environment. Figure 1 provides a schematic of the test case being 

investigated. The (ξ, η, ζ) coordinate system is fixed in space to the point where the phased 

array is initially located. The ζ axis passes through the center of the array as well as the axis of 

the turbomachinery under investigation.  

The position of each turbomachinery noise source is defined in this coordinate system. 

Each noise source can be defined if the ζ coordinate, the radial position 𝑟, the initial angle θ, 

the rotational frequency 𝑛, amplitude, frequency, and initial phase are known. The phased array 

can also be repositioned in the (ξ, η, ζ) coordinate system by a value Δ𝑟 and rotated about its 

own y axis by angle ΔΨ. The (x, y) coordinate system is fixed to the center of the array and will 

be seen in the beamform maps. The synthetic array is of the same design as the Optinav Inc. 

Array 24: Microphone Phased Array System. It has a diameter of 1 m, and the microphones are 

distributed along logarithmic spiral arms.  

 
Fig. 1. Coordinate system of the test case under investigation. 

The noise sources of the rotor blades, guide vanes, and the motor are represented by 

coherent monopole noise sources of equal amplitude. At present a single noise source is placed 

on each blade tip and one is placed on the axis of the motor. The noise sources radiate at a 

specified frequency of 3000 Hz and are in-phase. Future investigations will look at distributed 
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sources and other more complex noise sources. The rotor under investigation has 15 blades and 

rotates at -200 revolutions per second. There are also 15 stationary guide vanes, and, unless 

otherwise stated, the diameter of the rotor and the guide vane is 0.4 m. The resulting interaction 

tone radiates from both the rotor and the guide vane at a frequency of 3000 Hz. The motor also 

radiates at 3000 Hz, which can be imagined to be a harmonic of the motor noise. The test case 

was designed to have a relatively high frequency, in order to avoid resolution issues in the 

results, and therefore would be difficult to realize in real life. Unless otherwise stated, the 

phased array is located in its initial position of (0, 0, 0), facing the ζ direction and the 

turbomachinery noise sources are located in the ζ= 0.3 m plane.  

3 NOISE SOURCE GENERATION 

The synthetic acoustic signals were created using an in-house program implemented in 

GNU Octave [14]. The program is capable of generating pressure time series at predefined 

microphone positions in case of multiple stationary as well as rotating tonal, monopole noise 

sources. It operates in the following manner: First, the program generates the required harmonic 

wave with the specified frequency, amplitude, and phase at equally distributed time instances. 

This is the emitted noise as observed from a set of coordinates fixed to the source. Then the 

position of the source is calculated as a function of time, taking its initial angular position, 

radius, angular velocity, and distance from the array plane into account. The propagation time 

delays are then calculated for each emission time instant using the instantaneous distances 

between the source and the receiving microphones and the speed of sound. The decrease in 

amplitude due to the spreading of the wave front is also taken into consideration. In this way, 

the instantaneous pressure values are obtained for a set of microphone arrival times. However, 

the arrival times are no longer equidistantly spaced in the case of moving sources. This is 

resulting from the Doppler-effect. For further processing, the data is interpolated for a specified 

sampling frequency, using piecewise cubic interpolation in order to form a uniformly 

distributed time series. To improve the interpolation, the sound generation steps are carried out 

with a sampling frequency that is three times larger than that of the final sampling frequency. 

Care has been taken to avoid extrapolation. This method is repeated for all sources, after which 

the results are summed for each individual microphone position, creating the sound file of that 

channel of the phased array. In preliminary tests, the method has reliably produced the required 

sound samples with a signal-to-noise ratio of over 60 dB. 

4 PROCESSING OF THE DATA 

The simulation data is processed by in-house beamforming software, which was also 

implemented in GNU Octave [14]. The files that were processed have a sample length of 2 

seconds and a sampling frequency of 44100 Hz. Fourier transformations are carried out on 2048 

elements at a time, with use of a Hanning window and a 50% overlap. Two types of algorithms 

are used: the classical frequency-domain based Delay & Sum (DS) method [1], which can 

localize stationary sources in an absolute reference frame, and the Rotating Source Identifier 

(ROSI) method [2], which can localize sources which are stationary in a rotating reference 

frame. The diagonal elements of the cross-spectral matrices are not removed, as previous 

investigations have shown that diagonal removal has no positive influence on the results in case 

of synthetic noise sources. Beamforming is done for narrowband and third-octave band 

frequency bins. The results provide beamform maps, which display the magnitudes and the 

positions of the strongest sources located in the investigated plane for a given frequency range. 
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The magnitudes of the beamform map sources are presented as levels which are calculated from 

sound pressure squared values which have been corrected for sound intensity attenuation with 

regard to distance. The values are therefore given with regard to the source position. The results 

are converted to and presented as power spectral density (PSD) results. The reference value 

used in the calculation of the levels is 2x10-5 Pa.  

5 RESULTS 

5.1 Axially aligned, single noise source investigation 

A large portion of this investigation looks at the basic test cases described in chapter 2, 

where a rotor, guide vanes, and a motor are investigated from the axial direction. First, the three 

sets of noise sources are looked at individually, since this provides us with some useful 

information regarding the processing of noise sources which are localized to their Mach radii 

and a set of reference data to which further cases can be compared when the three sets of noise 

sources are looked at simultaneously.  

 

 
Fig. 2. DS beamform maps of turbomachinery noise sources investigated from the axial direction 

(narrowband, ζ=0.3 m): motor (left), rotor blades (middle), guide vanes (right). 

 

 
Fig. 3. ROSI beamform maps of turbomachinery noise sources investigated from the axial direction 

(narrowband, ζ=0.3 m): motor (left), rotor blades (middle), guide vanes (right). 

Figure 2 shows narrowband DS results for a turbomachinery test case which is located in 

the ζ=0.3 m plane (see description in chapter 2). First only a motor is investigated, which is the 

first of the three figures (located on the left side). As expected, the noise source appears at its 

true position, on the axis. The beamform map for the rotor is located in the middle, and the one 

for the guide vane is located on the right. As described in [5,7] the apparent noise sources of 



6th Berlin Beamforming Conference 2016    Horváth and Tóth 

 

 

7 

 

coherent noise sources of turbomachinery are localized to their Mach radii, which for this case 

is on the axis (0, 0, 0.3), instead of their true positions, which is circumferentially distributed at 

a radius of 0.2 m in the ζ=0.3 m plane. The beamform maps and the magnitudes of the two 

apparent noise sources located on the axis are similar, as would be expected according to [8].  

In Fig. 3 a similar set of beamform maps can be seen, but in this case the results are 

produced by applying the ROSI method. It can be seen that the results contain less sidelobes. 

The results for the rotor and the guide vane show the apparent noise source as localized to the 

Mach radius, and the levels are similar to those seen in the DS results, as expected according to 

the results in [8]. 

Taking a look at the third-octave band results for the same investigations, it can be seen 

that the DS results in Fig. 4 are very similar to the DS results attained using narrowband 

processing (see Fig. 2), except for the peak values being slightly larger here. Comparing the DS 

results (Fig. 4) to the ROSI results in Fig. 5, it can be seen that the amplitudes of the apparent 

noise sources are almost the same, as would be expected according to the investigations 

published in [8]. 

 

 
Fig. 4. DS beamform maps of turbomachinery noise sources investigated from the axial direction 

(third-octave band, ζ=0.3 m): motor (left), rotor blades (middle), guide vanes (right). 

 

 
Fig. 5. ROSI beamform maps of turbomachinery noise sources investigated from the axial direction 

(third-octave band, ζ=0.3 m): motor (left), rotor blades (middle), guide vanes (right). 

Investigating the third-octave ROSI beamform maps displayed in Fig. 5, an interesting 

difference can be seen when comparing them to the narrowband beamform maps provided in 

Fig. 3. As with the DS beamform maps, the amplitudes are slightly larger for the third-octave 

results as compared to the narrowband investigations, but what is interesting from our point of 

view is the ring which appears around the apparent noise source for the case of the rotor and 

the guide vane. For the motor (left side portion of the figure), no such ring appears. Therefore, 
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this ring is most likely not associated with a noise source which is truly located on the axis in 

the form of a sidelobe. The ring appears at the radial position where the rotor and guide vane 

noise sources are truly positioned, and therefore seems to hint at the true location of the noise 

sources. For the rotating coherent noise sources (middle portion of the figure), the ring consists 

of 15 individual noise sources, the number of actual noise sources being investigated here, 

which also agrees with the number of spaces located between the individual noise sources. For 

the stationary coherent noise sources (right side portion of the figure), a solid ring appears on 

the beamform map. This information is interesting for us with regard to determining the true 

noise source locations and will be discussed below. 

5.2 ROSI in revealing the radial position 

It is interesting to see that the narrowband ROSI investigations of a set of rotating coherent 

noise sources localizes the apparent noise source to the Mach radius, without necessarily 

providing any information as to the true locations of the noise sources, while a third-octave 

band investigation of the same case seems to hint at the true location of those sources. This 

section aims at shedding light on why this occurs.  

First of all, sidelobes should be discussed, since one might assume that the rings which are 

seen above are standard sidelobes. In Fig. 6 a third-octave investigation of three different sets 

of rotating noise sources can be seen. All the sets are similar to the rotating noise source 

investigated above, except that the radius of each set of noise sources is different. In the figure 

on the left, the radius is 0.2 m, while in the middle it is 0.3 m, and on the right it is 0.4 m. It can 

be seen that choosing the radius of the initial case as having a radius of 0.2 m was in a sense an 

unfortunate choice, since one of the main sidelobe rings has approximately the same radius. On 

the other hand, it also provides us with a worst case scenario. It can be seen that in each case 

the radial ring of second largest magnitude, after the apparent noise source localized to the 

Mach radius, is always the one on which the noise sources were truly located, regardless of 

whether or not that ring is shared with other sidelobes. Therefore, it can be stated that the rings 

should be further investigated. The same is true for the case of the stationary noise sources 

displayed in Fig. 7. The difference between the two sets of results is that the set of data which 

investigates rotating noise sources in a rotating reference frame (Fig. 6) produces concentrated 

sources along the circumference, while the set of data which looks at stationary noise sources 

in a rotating reference frame provides a solid ring (Fig. 7). Before this can be understood, the 

ROSI method needs to be explained in a bit more detail. 

The ROSI beamforming method is an extension of the DS method for rotating source 

models. The main difference between the two methods is that the ROSI method applies a so 

called deDopplerization step in order to place the rotating noise sources into a rotating reference 

frame and hence make them stationary. The positions and velocities of the possible noise 

sources are accounted for by correcting the arrival time and amplitude of each data point with 

regard to each receiver position. The corrected source signals are then processed with a 

beamforming method which agrees with the DS method [2]. When the ROSI method is applied 

to a set of data, it takes a sound file which is associated with a given microphone and processes 

it for every initial circumferential position of every radial position of the investigated plane. In 

every investigation point on that plane, it resamples the data to correct for the rotation of the 

source. The data from each microphone is then delayed and summed in order to arrive at a 

beamforming level which is placed on that point of the beamform map.  
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Fig. 6. ROSI beamform maps of rotating noise sources investigated from the axial direction (third-

octave band, ζ=0.3 m). Radius: 0.2 m (left), 0.3 m (middle), 0.4 m (right). 

 
Fig. 7. ROSI beamform maps of stationary noise sources investigated from the axial direction (third-

octave band, ζ=0.3 m). Radius: 0.2 m (left), 0.3 m (middle), 0.4 m (right). 

If no noise sources are located in the investigated position, or in its vicinity, then the data 

is altered by the correction to some entirely different form for each microphone. When the data 

is delayed and summed, since there will be little to no correlation between the various 

microphones, a small beamform level will be calculated. If a noise source is truly located in 

that position, then the sampled sound file will be corrected for in an appropriate manner for 

every microphone, arriving at a set of data which is very similar. Hence, when delaying and 

summing the files, if the noise sources are not coherent with other sources in the investigated 

plane, then a large beamform level will be calculated for the beamform map in that position. If 

the noise source is coherent with other noise sources located within the investigated plane, then 

the phased array interprets the sound as if the noise source were located at its Mach radius 

position (due to the sound adding up constructively and destructively), and therefore the data 

which is to be delayed and summed will only be highly correlated at the Mach radius position, 

and hence the apparent noise source will be placed there [5, 7].  

What happens for investigated points which are near a true noise source, such as along the 

same circumference but between two true noise sources? The resampled data created by the 

ROSI method will be relatively well correlated, but not entirely coherent, since the true noise 

sources are near to the investigated point in the space as well as frequency domains, but will 

not be corrected in exactly the same manner for each microphone position. Therefore, for some 

frequency bins which are near the true radiated frequency the data will be relatively well 

correlated, but not 100%. Since this repeats as we travel around the circumference, the noise 

sources will also have a somewhat coherent character. 

In order to understand this better, imagine a set of purely tonal noise sources distributed 

along a given circumference. Take a point between two of the noise sources, which is located 
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along the circumference. It can be understood that the noise source which is slightly ahead of 

the investigated point in the direction of rotation will have a slightly higher/lower frequency 

due to the Doppler shift than expected for the point under investigation, while the one which is 

slightly behind it will have a slightly lower/higher frequency, depending on the angle between 

the source and the given microphone for the current location under investigation. If the sound 

file is then corrected by the ROSI method as if the noise source were truly located between the 

two noise sources, then the resulting data will not be the same, but will still be somewhat well 

correlated for all the microphones, and this will result in a noise source being placed on the 

beamform maps between and around the true noise source positions. Since the data which is 

corrected for by the ROSI method will also be somewhat coherent, an apparent noise source 

will also be placed at the Mach radius position for frequency bins which are near the true 

radiation frequency, but not necessarily agreeing with the investigated frequency. Therefore, 

the noise sources localized to the true radial positions are actually showing the empty areas 

between the true noise sources for frequencies near the radiation frequency. In processing a 

third-octave band worth of data, the method which is applied first calculates each narrowband 

within the larger band range and then sums up the results. Therefore, even if the ring at the true 

radial position described here does not appear in the bin of the frequency under investigation, 

since it is relatively strong in the bins which surround it, it will appear among the dominant 

sources in the third-octave band results. This is what can be seen in Fig. 6. With regard to other 

sidelobes, they appear in many of the bins within the third-octave band, but will usually not be 

as strong as those described here, and therefore this noise source will often be one of the 

dominant noise sources within the third-octave band under investigation. 

In the case of stationary noise sources distributed along a given circumference, the 

radiation frequency of the noise sources is the true radiation frequency (in this case 3000 Hz), 

and the ROSI method resamples the data, adding a Doppler shift to the signal. Once again, the 

results show some level of coherence for the points between the noise sources. Since the method 

corrects for the rotation of the sources, it distributes the results around the circumference evenly, 

resulting in a solid band on the beamform maps. This is what can be seen in Fig. 7. 

These results are important, since they show a way of determining the true radial positions 

of rotating and stationary coherent noise sources experienced in turbomachinery applications. 

In this section it was shown that this method provides information for the case of a single set of 

noise sources (motor, rotor, or guide vane). If the true radial position is determined, then from 

the beamform peak level, 𝐿𝐵, which is located at the Mach radius, the contribution to the 

beamform peak level from each equal strength coherent in phase noise source, 𝐿𝐵,𝑜𝑛𝑒, can be 

determined with the help of the equation presented in [8], which is analogous to the basic 

acoustic equation for adding levels. As given in Eq. 1, if one finds the 𝐿𝐵 associated with the 

noise source under investigation, and one knows the number of sources, 𝑥, then one can 

calculate 𝐿𝐵,𝑜𝑛𝑒. Therefore, we now know how to determine where the noise source is radially 

located and how large of a contribution each coherent source makes to the beamform peak 

located at the Mach radius.  

 
𝐿𝐵 = 𝐿𝐵,𝑜𝑛𝑒 + 20 log10(𝑥)

 
 (1) 



6th Berlin Beamforming Conference 2016    Horváth and Tóth 

 

 

11 

 

5.3 Multiple noise sources 

As a result of studying the beamform maps of turbomachinery applications, it is now 

known that incoherent noise sources will be localized to their true noise source locations by the 

DS method for stationary sources or the ROSI method for rotating sources. For coherent 

sources, the noise source will be localized to the Mach radius by both the DS and ROSI 

methods, with wideband processing providing a hint as to the true radial positions of the 

sources. Now that the elements in a single set of noise sources (motor, rotor, or guide vane) 

have been localized and the contribution to the beamform peak has been determined, the next 

step would be to localize and determine the contribution of each in a case where multiple noise 

sources are looked at simultaneously.  

A few cases were looked at, but will not be presented in detail. Applying the method to the 

case of three noise sources (motor, rotor, guide vane) located in the same plane, not enough 

information is available to separate the three noise sources localized to the axis from one 

another. For noise sources which are coaxial and relatively closely spaced (having 1/4 rotor 

diameter distance between the motor, the rotor, and the guide vane), the DS and ROSI methods 

lack the resolution needed to separately analyze the various planes from the axial direction. In 

a case where larger distances are characteristic of the distance between the planes containing 

the noise sources, the above stated investigation method combined with investigations from the 

radial direction seem promising in providing enough information for determining the 

contribution from each plane as well as determining the radial distribution of the noise sources. 

6 SUMMARY 

In this investigation the presented findings provide a means by which the radial position 

and the contribution of each coherent noise source to the beamform map can be determined for 

a single set of coherent noise sources (rotor or guide vane). This method cannot yet be applied 

to a general case, where multiple sets of noise sources are located in one plane or coaxial and 

relatively closely spaced. This will be the subject of future investigations, though it is likely 

that the approach still needs to be further developed in order to accomplish this task.  

Though not the subject of the paper and not emphasized throughout the text, the authors 

feel that the true value of the outcome of this paper is beyond the scope of this investigation. 

Many earlier investigations have stated that it is not possible to determine the true positions of 

coherent noise sources using currently available beamforming methods. In a way, the presented 

results support this thought, but show that this is not necessarily a limit of the beamforming 

methods, but due to the fact that the results of beamforming investigations of coherent noise 

sources are not yet truly understood. It is shown that investigating these results in greater detail, 

more information can be extracted from the results, leading to the localization of the coherent 

noise sources. The investigation also shows that taking into consideration the extra information 

provided by the Doppler shift could be very useful in the further investigation of coherent noise 

sources. Until now, investigations which have applied a Doppler correction to moving sources 

seem to have used the information in order to correct data in a given microphone position, and 

then neglected to take into consideration the extra information provided by correcting the data 

during the analysis of the results. Further investigations will focus on better understanding the 

beamforming results of coherent noise sources, taking into account the extra information 

attained from the Doppler Effect, after which the newly gained knowledge and experiences will 

be applied in the development of advanced beamforming methods designed for the investigation 

of rotating coherent noise sources. 
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