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ABSTRACT

Recent studies have shown that the localization of acoustic sources based on circular ar-
rays can be improved at low frequencies by combining beamforming with acoustic holog-
raphy. This paper extends this technique to the three dimensional case by making use of
spherical arrays. The pressure captured by a rigid spherical array under free-field condi-
tions is used to compute the expected pressure on a virtual and larger sphere by means of
acoustic holography. Beamforming is then applied with the pressure predicted at the virtual
array. Since the virtual array has a larger radius compared to the one of the physical array,
the low frequencies (the ones with larger wavelength) are better captured by the virtual
array, and therefore, the performance of the resulting beamforming system is expected to
improve at these frequencies. The proposed method is examined with simulations based on
delay-and-sum beamforming. In addition, the principle is validated with experiments.

1 INTRODUCTION

Spherical arrays of microphones have been of interest in the last decade, because of the ability
to measure in a three-dimensional sound field [1, 2]. Typically, these arrays are suitable for
sound source localization using beamforming [3–6] and for sound recording in higher order
reproduction systems such as Ambisonics [7–9].
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Several strategies to improve the performance of beamforming systems have been suggested
in the recent years. For example, it has been shown that arrays with flushed-mounted mi-
crophones on a rigid sphere perform better compared to open (or transparent) spherical ar-
rays [2, 10, 11]. Besides this, different beamforming techniques have been designed for this
geometry [6]. Among them, phase-mode (or spherical harmonics) beamforming is of particular
interest, because it exploits the spherical geometry by decomposing the sound field in a series
of spherical harmonics. Compared to the classical delay-and-sum beamforming, phase-mode
beamforming presents a better directivity, at the expense of being more sensitive to noise [5].
In fact, delay-and-sum beamforming is a very robust technique, but it performs poorly at low
frequencies, being omnidirectional in the worse case.

Inspired by an article on uniform circular arrays presented recently in Ref. [12], the present
article examines the possibility of enhancing the localization of noise sources with spherical
arrays at low frequencies by combining spherical acoustic holography [13–15] and delay-and-
sum beamforming. The idea behind this concept is that for a given number of transducers,
an array with a larger radius will perform better at low frequencies than a smaller array [2].
However, if one cannot change the geometry of the array, a simple solution to obtain a virtually
larger array is illustrated in Fig. 1: the sound pressure is captured with a spherical array (rigid or
transparent), and by means of acoustic holography the pressure is predicted at a virtual spherical
array with larger radius. Finally the pressure at this virtual array is used for the beamforming
process. The theory presented in this work is supplemented with simulations and measurements.

virtual array

physical array

acoustical
holography beamforming

Figure 1: Procedure to obtain the beamforming map: the pressure captured by a spherical array
is used to predict the pressure at a larger and virtual array with acoustic holography,
and from this beamforming is carried out.
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2 ACOUSTIC HOLOGRAPHY AND BEAMFORMING WITH A SPHERICAL
ARRAY

2.1 Acoustic holography

Acoustic holography with a spherical array of transducers is a sound visualization technique that
enables the reconstruction of a sound field over the three-dimensional space, based only on the
sound pressure or particle velocity captured with the array. Acoustic holography measurements
are usually performed very close to the source and the reconstruction lies somewhere between
the measurement position and the source, as in near-field acoustic holography (NAH). However,
in the present study, measurements in the far field of the sound source are of concern.

Let us consider a rigid spherical array with radius R centered at the origin of the coordinate
system. The pressure at a point outside the array is given by the sum of the incident sound
pressure and the scattered pressure due to the presence of the sphere,

p = pinc + psca. (1)

Given the spherical geometry, it makes sense to describe both pressures in terms of solutions
of the Helmholtz equation in spherical coordinates (r,θ ,ϕ) (θ being the inclination angle with
respect to the z−axis and ϕ being the azimuth). The incident pressure, which is the one that
would be measured if the scatterer was not present, must be described by means of spherical
Bessel functions, because these are finite (even at the origin) [15, 16],

pinc(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Amn jn(kr)Y m
n (θ ,ϕ), (2)

where jn is the spherical Bessel function of order n, and the terms Y m
n are the so-called spherical

harmonics,

Y m
n (θ ,ϕ) =

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cosθ)e jmϕ , (3)

in which Pm
n is the associated Legendre function. Note that the time dependence e− jωt is omit-

ted. The scattered pressure must be described as outgoing waves, represented in this case by the
spherical Hankel functions of the first kind [17],

psca(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Bmnh(1)n (kr)Y m
n (θ ,ϕ), (4)

where h(1)n is the Hankel function of the first kind and order n.
The relationship between the coefficients Amn and Bmn is given by the fact that the total radial

velocity at the surface of the rigid sphere (r = R) is zero. From this condition it follows that

Bmn =−Amn
j′n(kR)

h′(1)n (kR)
, (5)
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where j′n and h′(1)n are the radial derivatives of jn and h(1)n . Therefore, the total pressure is

p(kr,θ ,ϕ) =
∞

∑
n=0

n

∑
m=−n

Amn

(
jn(kr)− j′n(kR)

h′(1)n (kR)
h(1)n (kr)

)
Y m

n (θ ,ϕ). (6)

Since the pressure at the array is known, the coefficients Amn can be retrieved by making use of
the orthogonality relationship of the spherical harmonics,∫ 2π

0

∫
π

0
Y m

n (θ ,ϕ)Y µ

ν (θ ,ϕ)∗ sinθdθdϕ = δnνδmµ , (7)

where δnν is the Kronecker delta function. Then, it can be shown that the coefficients Amn are

Amn =

∫ 2π

0
∫

π

0 p(kR,θ ,ϕ)Y m
n (θ ,ϕ)∗ sinθdθdϕ

jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

. (8)

To implement this equation in practice, the integrals must be substituted by discrete summa-
tions, capable of fulfilling the discrete orthogonality relationship of the spherical harmonics,
which has to be accounted for in the design of the array,

M

∑
i=0

αiY m
n (θi,ϕi)Y

µ

ν (θi,ϕi)
∗ = δnνδmµ for ν ≤ Nhol, n≤ Nhol, (9)

where i represents the ith microphone at position (R,θi,ϕi), M is the number of sensors, and
αi is an associated integration weight factor that guarantees orthogonality up to a certain order
Nhol . Using the discrete orthogonality, the expression for the expansion coefficients Amn results
in [15]

Amn =
∑

M
i=1 αi p(kR,θi,ϕi)Y m

n (θi,ϕi)
∗

jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

. (10)

This relationship assumes that the highest order of spherical harmonics included in the sound
pressure is lower or equal to Nhol . This is a reasonable assumption as long as the value kR is
about Nhol . When this requirement is not met aliasing occurs in the coefficients.

The coefficients Amn can be used to compute the incident pressure and the scattered pressure
separately (see Eqs. (2) and (4)) and the total pressure (see Eq. (6)) at a point (r,θ ,ϕ).

2.2 Beamforming

Beamforming is a signal processing technique well used for localization of sound sources.
There are several beamforming methods, but in the present study, delay-and-sum beamforming
is chosen. Although this method is the oldest one, it is still widely used due to its robustness.
It consists of delaying the signals of each array microphone by a certain amount and adding
them together, to reinforce the resulting signal. Depending on the delay applied to the different
microphones, the array is steered to a particular direction, whereas other directions are totally
or partially attenuated [18]. Since in the current study the array is mounted on a rigid sphere,
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it is simpler to express the beamforming output in the spatial frequency domain, because this
allows us to compensate for the effect of the scatterer. In this domain the output is

b(kR,θ ,ϕ) = B
M

∑
i=1

wi p̃(kR,θi,ϕi)p(kR,θi,ϕi|θ ,ϕ)∗, (11)

where B is a scaling factor, wi is a weighting factor, p̃ is the measured pressure at the ith
microphone, while p corresponds to the theoretical pressure at the ith microphone due to a
source in the far-field at (θ ,ϕ). It can be shown that the pressure at (R,θi,ϕi) due to a plane
wave created by a source at (θ ,ϕ) is [4]

p(R,θi,ϕi) =
∞

∑
n=0

n

∑
m=−n

Qn(kR)Y m
n (θi,ϕi)Y m

n (θ ,ϕ)∗, (12)

where Qn is

Qn(kR) = 4π(− j)n

(
jn(kR)− j′n(kR)

h′(1)n (kR)
h(1)n (kR)

)
. (13)

Making use of this expression the output of the delay-and-sum beamformer is

b(kR,θ ,ϕ) = B
M

∑
i=1

wi p̃(kR,θi,ϕi)
N

∑
n=0

(
Qn(kR)

n

∑
m=−n

Y m
n (θi,ϕi)Y m

n (θ ,ϕ)∗

)∗
. (14)

Note that the second summation has to be truncated at N for the real implementation. A reason-
able value is N ≈ kR+1. By making use of the addition theorem [19] that states that

Pn(cosψq) =
4π

2n+1

n

∑
m=−n

Y m
n (θ ,ϕ)Y m

n (θq,ϕq)
∗, (15)

where
cos(ψq) = cosθ cosθq + sinθ sinθq cos(ϕ−ϕq), (16)

the beamformer output can be simplified:

bN(kR,θ ,ϕ) = B
M

∑
i=1

wi p(kR,θi,ϕi)
N

∑
n=0

2n+1
4π

Qn(kR)∗Pn(cosψi). (17)

To have an output equal to one when a plane wave with amplitude unity is measured at the array,
it is easy to show that the value of B should be

B =
1

∑
M
i=0 wi |p(kR,θi,ϕi|θ0,ϕ0)|2

, (18)

where θ0 and ϕ0 can be any angle, because with the spherical array the shape of the beampattern
is independent of the steering direction, as it is practically shift-invariant [2].
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2.3 Beamforming with a virtual array

As mentioned in the introduction, the goal of this study is to combine acoustic holography
together with beamforming to improve the beamforming map at the low frequencies. To do
this, the concept of virtual array has been presented; see Fig. 1. The pressure captured with a
rigid spherical array is used to predict the pressure at a virtual spherical array with larger radius
Rv, with virtual sensors placed at (Rv,θi,ϕi). The number of virtual sensors and their azimuth
and inclination is kept the same as in the physical array. At this point we can consider two
possibilities: 1) A virtual transparent array or 2) a virtual rigid array. For the virtual transparent
array the expression is simply the incident pressure given in Eq. (2), evaluated at r = Rv. For
the case of the virtual rigid array we should create a virtual spherical scatterer at Rv. To do that
the incident pressure with coefficients Amn (the ones obtained with the physical array) would
impinge on the virtual sphere creating a virtual scattered pressure distributed at the surface of
the virtual array. In accordance with Eqs. (4) and (5), the scattered pressure at the virtual
transducers would be

psca(Rv,θi,ϕi) =−
∞

∑
n=0

n

∑
m=−n

Amn
j′n(kRv)

h′(1)n (kRv)
h(1)n (kRv)Y m

n (θi,ϕi). (19)

Then, the total pressure at the virtual rigid array (at r = Rv) would be

p(Rv,θi,ϕi) =
Nhol

∑
n=0

n

∑
m=−n

Amn

(
jn(kRv)−

j′n(kRv)

h′(1)n (kRv)
h(1)n (kRv)

)
Y m

n (θi,ϕi). (20)

Since a rigid array has benefits compared to the transparent array, a virtual rigid spherical
array is chosen for the current study.

To sum up, the procedure for combining holography and beamforming is the following one:

1. With a rigid spherical array measure the pressure at the microphones, p(R,θi,ϕi), where
i = 1, . . . ,M.

2. Insert p(R,θi,ϕi) into Eq. (10) to retrieve the coefficients Amn to be used for acoustic
holography.

3. Insert Amn into Eq. (20) to obtain the predicted pressure at the virtual rigid array,
p(Rv,θi,ϕi).

4. Use p(Rv,θi,ϕi) as input of the beamforming process, given in Eq. (17), but substituting
R by Rv and using N = kRv + 1. In the present study, the chosen weighting factor, wi,
equals the integration factor of the acoustic holography process, αi.

3 SIMULATION STUDY

The focus of this section is to analyze the outcome of combining acoustic holography and
beamforming by means of simulations. A rigid spherical array with radius R = 9.75 cm and
50 flush-mounted microphones has been assumed. The characteristics of the array used for the
simulations are the same of that used for the measurements (which will be presented in Sec. 4).
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A picture of the array can be seen in Fig. 2. The location of the microphones and their associated
integration weights result from an optimization procedure inspired by Ref. [20]. This procedure
guarantees that the discrete orthogonality relation across microphone positions given in Eq (9)
is valid up to order Nhol = 5, if kR≤Nhol . When this condition is not met, that is, above 2.8 kHz,
aliasing occurs.

Figure 2: Prototype of spherical array used in the measurements.

The simulations assume a plane wave created at coordinates (θ ,ϕ) = (90◦,90◦). However,
the origin of the plane wave is not important because the array is practically shift-invariant.
The frequency range of analysis contains the low frequencies up to 2 kHz. To account for the
background noise, a signal-to-noise ratio (SNR) of 30 dB at each microphone due to uniformly
distributed noise is considered.

Following the procedure described in the previous section, acoustic holography is performed
prior to beamforming, considering a virtual array with a radius 4 times larger than the radius of
the physical array used to measure the actual sound field. The normalized beamformer output
obtained with the physical array using conventional beamforming and the output of the virtual
array are shown in Fig. 3 for a frequency of 210 Hz. For ease of reference, the ideal beamformer
output that would be obtained in absence of noise with a physical array of the same radius is
also shown.

As can be seen in the leftmost subfigure in Fig. 3, the output for the physical array is rather
omnidirectional (the level is quite uniform). However the map is significantly improved when
using the pressures at the virtual array as the source located at (90◦,90◦) is successfully identi-
fied. Moreover, the beamformer map resembles the map of the physical array of the same radius
under ideal conditions to a high extent. The discrepancies are caused by the noise assumed for
the virtual array simulation.

The performance is also quantified by two measures: the resolution and the maximum side
lobe level (MSL). The resolution is the −3 dB width of the main lobe, whereas the MSL is
the difference between the highest secondary lobe and the main lobe. For both measures, the
smaller the values, the better. The resulting resolution for the azimuth and inclination angles, as
well as the MSL, can be seen in Fig. 4, along the entire frequency range of interest. This figure
includes the results with the physical array with radius R (black curve) and the ones obtained
at four virtual arrays with radii 2R (continuous blue curve), 3R (continuous green curve), 4R
(continuous red curve), and 5R (continuous cyan curve). The ideal curves obtained with arrays
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(a) Physical array – R (b) Virtual array – 4R (c) Physical array – 4R (ideal)

Figure 3: Normalized beamforming outputs at 210 Hz obtained with three rigid spherical ar-
rays: one with radius R = 9.75 cm (left), a virtual array with radius 4R (middle) that
results from the pressure at the physical array with radius R via acoustic holography,
and an array of radius 4R with absence of noise (right). A SNR of 30 dB was assumed
at each microphone of the physical array with radius R.

with radii 2R (dashed blue curve), 3R (dashed green curve), 4R (dashed red), and 5R (dashed
cyan) for a SNR of infinity are also depicted.

In all cases it can be seen that both the resolution and the MSL are non-existent at low fre-
quencies, meaning that the beamforming map is omnidirectional. From a particular frequency
that depends on the array characteristics, the resolution improves, and sidelobes arise resulting
in a certain MSL.

The resolution for both azimuth and inclination angles is improved towards the low frequen-
cies with increasing radius of the virtual array, in comparison with the physical array of radius
R used to capture the signals. Interestingly the curves of the virtual arrays are very similar to
the ones of the arrays with the same radius under ideal conditions, although some deviations
that become stronger with increasing virtual radius are observed for the virtual arrays of radii
3R, 4R and 5R.

On the other hand, the MSL of the virtual arrays is progressively shifted towards the low
frequencies with increasing virtual radius. However, the MSL is more sensitive to noise than
the resolution, as this measure worsens towards the high frequencies with increasing virtual
radius, and the differences with the ideal MSL obtained with the physical arrays of the same
radii in absence of noise (dashed curves) become larger. This is a consequence of the holography
process itself, as the noise captured with the physical array is amplified with increasing distance
to the reconstruction points, specifically for r >R. Therefore the reconstructed pressure deviates
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Figure 4: Resolution along the azimuth angle (top left), along the inclination angle (top right)
and MSL (bottom) obtained by means of simulations with a physical array of ra-
dius R = 9.75 cm and 50 microphones (black continuous curve), as well as with four
virtual arrays with radii 2R, 3R, 4R and 5R (blue, green, red and cyan continuous
curves), that result from the pressure at the physical array with radius R via acous-
tic holography. The colored dashed lines show the results with arrays of the same
radii as the virtual arrays, but with a SNR of infinity. A plane wave was created at
(θ ,ϕ) = (90◦,90◦), and a SNR of 30 dB was assumed for the physical array with
radius R.

from the ideal one [15], having a direct impact on the beamforming map, particularly on the
sidelobes. Although not shown here, simulations reveal that the amplification of noise with an
virtual array of radius 6R has dramatic influence on the beamforming map.

In conclusion, the results from the simulations show that one could take advantage of virtual
arrays using the appropriate radius for each frequency, determined by the MSL. For example,
in the case of study, a virtual array with radius 5R is suitable up to 170 Hz, from this frequency
to about 280 Hz, one with radius 4R would be preferable, from 280 Hz to 400 Hz, 3R is more
adequate, whereas from 400 Hz to 800 Hz a virtual array with radius 2R seems better. Above
800 Hz the physical array should be used as it is.

4 MEASUREMENT RESULTS

Measurements with a Brüel & Kjær (B&K) prototype array were carried out in a large anechoic
chamber of about 1000 m3. The array, which can be seen in Fig. 2, had 50 1/4 in. microphones
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B&K Type 4935 flush-mounted on a rigid sphere and 11 video cameras. Its radius, R, was
9.75 cm.

The set-up, shown in Fig. 5, consisted of a loudspeaker placed in the far field, at 5.8 m from
the array. The loudspeaker height was 1 m and the array height 1.30 m. The array was placed
such as the loudspeaker was detected at about (θ ,ϕ) = (90◦,90◦).

Figure 5: Measurement set-up.

The loudspeaker was fed with white noise. The signal level was adjusted so that the SNR at
the array microphones was about 30 dB for most of the frequency range, although the SNR at
the low frequencies was lower. The signal at each microphone was recorded with a B&K Pulse
analyzer for 10 s. The data was segmented in blocks of 1 s using a Hanning window and a 50%
overlapping. For each block, the crosspectra between each microphone and a reference, which
was chosen to be microphone number one, was computed. The averaged crosspectra were used
as input to conventional delay-and-sum beamforming. Besides, the data were used to predict
the pressure at several virtual radii Rv, at 2R, 3R, 4R and 5R, before applying beamforming,
following the procedure indicated in Sec. 2.3. The resulting resolution for the azimuth and
inclination angles, and the MSL with the physical and virtual arrays are shown in Fig. 6.

Both performance indicators follow the same trend observed in the simulations shown in
Fig. 4: the resolution improves towards the low frequencies with increasing virtual radius, and
the MSL is shifted towards the low frequencies, although its level increases with increasing
virtual radius. The reader should keep in mind that the simulations were carried out assum-
ing a SNR of 30 dB, which was not exactly the case for the measurements, especially after
postprocessing the data, and therefore, some deviations between simulations and results are ex-
pected. In this regard, the MSL curves obtained with the virtual arrays are slightly better than
the simulated ones.

These results confirm that the concept of virtual array can be used to enhance the performance
of the beamforming system at low frequencies, with an appropriate virtual radius depending on
the frequency. In this study, this makes it possible to extend the lower frequency of the physical
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Figure 6: Resolution along the azimuth angle (top left), resolution along the inclination angle
(top right) and MSL (bottom) obtained by means of measurements with a rigid spher-
ical array of radius R = 9.75 cm and 50 microphones (black continuous curve), as
well as the resulting resolution and MSL when considering four virtual spherical ar-
rays with radii 2R, 3R, 4R and 5R (blue, green, red and cyan continuous curves), that
result from the pressure at the physical array with radius R via acoustic holography.
A plane wave was created at about (θ ,ϕ) = (90◦,90◦).

array down to about 55 Hz and 75 Hz in terms of resolution for the azimuth and the inclination
angles, respectively, and 110 Hz in terms of MSL, in comparison with the original 250 Hz,
350 Hz and 550 Hz.

The advantage of combining acoustic holography and beamforming is further illustrated in
Fig. 7, where the beamforming map obtained with the physical array at 210 Hz is shown, to-
gether with the maps obtained with virtual arrays with radii 2R, 3R and 4R. The larger the virtual
radius, the clearer the map becomes, making it possible to localize better the sound source at its
actual position, (90◦,90◦).
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Figure 7: Normalized beamforming outputs at 210 Hz measured with a rigid spherical array
with 50 microphones and radius R = 9.75 cm (top left), and three virtual rigid spheri-
cal arrays of radii 2R (top right), 3R (bottom left), and 4R (bottom middle), that result
from the pressure at the physical array with radius R via acoustic holography.
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5 CONCLUSIONS

Beamforming with spherical arrays is a powerful tool to localize and identify sound sources in
a three-dimensional sound field. However, the resulting maps are difficult to interpret at low
frequencies because such frequencies imply poor directivity, in particular with delay-and-sum
beamforming. Inspired by the fact that the performance of the array would improve at low
frequencies if a larger array was used, the present paper has presented a simple method that
consists of predicting the pressure at a larger and virtual array by means of acoustic holography,
and using it as input to the delay-and-sum beamforming procedure.

The performance of this combined approach has been assessed with two performance indica-
tors, namely the resolution and the MSL. Both simulations and experimental results show that
the resolution improves with increasing virtual radius, at the cost of the MSL, which is more
sensitive to noise. This implies that the maximum virtual radius appropriate for each frequency
is mainly determined by the MSL.

The use of holography prior to delay-and-sum beamforming offers new possibilities without
any additional cost. At low frequencies the concept of virtual array can be used to improve
the maps at such frequencies, while conventional beamforming can be applied directly at high
frequencies.
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