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ABSTRACT

Most phased microphone array algorithms solve liner equations to localize sound
sources. Since only a small portion of the source scanning region is expected to pos-
sess strong sources, the solutions of these equations would be sparse. In this paper, the
elastic net regularization technique is proposed to solve the linear equations for sound
source localization. Numerical validation results show that the elastic net regularization
technique could improve both the resolution and accuracy compared with DAS (Delay-and-
Sum) beamforming and DAMAS (Deconvolution Approach for the Mapping of Acoustic
Sources) algorithm, particularly for cases under low signal-to-noise ratios. To demonstrate
the advantage of the elastic net regularization, the NACA0012 airfoil self-noise sources are
localized based on a direct numerical simulation database. Results also show that methods
based on elastic net regularization have better performance than DAS beamforming and
DAMAS algorithm.

1 INTRODUCTION

Phased microphone array technique has been widely used in aeroacoustic investigations. In the
last decades, a number of sound source localization methods have been developed, including
near-field acoustic holography [14], beamforming [12], acoustic inverse methods [6, 10, 11] and
so on. The most commonly used beamforming algorithm in practice is DAS beamforming. DAS
beamforming is very robust, but it suffers from high sidelobe and low resolution [7]. Therefore,
many advanced methods are developed to improve its performance, such as DAMAS algorithm
[2] and CLEAN-SC (CLEAN based on spatial source coherence) [13]. Later, DAMAS2 and
DAMAS3 algorithm are proposed to simplify DAMAS algorithm to reduce CPU time [4]. A
linear programming method is also used to solve the linear equations established by DAMAS
algorithm to improve the computation efficiency [5].
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Most beamforming methods cannot ensure good results when signal-to-noise ratio (SNR) is
rather low [15]. In order to improve its performance in low SNR, convex optimization meth-
ods based on L1 norm constraints are applied nowadays [1, 15]. Yardibi [15] established SC-
DAMAS algorithm based on L1 norm constraints and Bai [1] used L1 norm constraints to
design array shape. Since sound source localization is a fundamentally inverse problem and
L2 norm regularization is widely used to solve discrete inverse problems [10, 11]. To combine
the good characteristic of L1 norm and L2 norm, mixed elastic net regularization methods are
proposed by Zhou [16] to solve regression problems.

The primary objective of the current work is to investigate the feasibility of using elastic
net regularization methods in the sound source localization problems. Linear equations es-
tablished by DAMAS algorithm and CSM (cross spectrum matrix) are both solved by elastic
net regularization method. After validation, this source localization methods based on elastic
net regularization are used to localize NACA0012 airfoil self-noise sources. Time-dependent
pressure data for phased array calculations are provided by numerical simulation using highly
accurate Computational Aeroacoustics (CAA) approach.

The rest of the paper is organized as follows. Section 2 provides an introduction to elastic
net regularization. This is followed by a brief description of beamforming methods, including
DAS beamforming, DAMAS algorithm and methods based on elastic net regularization. The
numerical validations of the proposed source localization methods based on elastic net regular-
ization are given in Section 3. In Section 4, this method is applied to the localization of airfoil
self-noise sources based on numerical simulation database. The concluding remarks are given
in section 5.

2 INTRODUCTION TO ELASTIC NET REGULARIZATION

Most of the phased microphone array algorithms establish linear equations which can be written
as

AAAxxx = bbb,AAA ∈ CM×N ,xxx ∈ CN ,bbb ∈ CM (1)

These linear equations are based on inverse problem and usually ill-conditioned. Therefore,
solving these equations directly by single value decomposition probably lead to wrong results
because AAA or bbb can be contaminated by noise. L2 norm based Tikhonov regularization is pro-
posed to solve these ill-conditioned equations[3, 10, 11]

min
xxx
{‖AAAxxx−bbb‖2

2 +λ‖xxx‖2
2} (2)

where λ is the regularization parameter which can be determined by generalized cross function
(GCV) or L-curve method. The solutions of L2 norm regularization typically have non-zero
values associated with all xxx. To obtain sparse solution, L1 norm regularization is often applied

min
xxx
{‖AAAxxx−bbb‖2

2 +λ‖xxx‖1} (3)

To combine the advantages of L1 and L2 norm, an elastic net regularization is employed
in this paper for the solutions that have many zero elements and the non-zero elements are
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compact. The elastic net regularization can be expressed as

min
xxx
{‖AAAxxx−bbb‖2

2 +λ1‖xxx‖1 +λ2‖xxx‖2
2} (4)

The objective function of elastic net regularization is convex and can be solved efficiently by
Matlab toolbox CVX. CVX uses interior point method to solve convex optimization problems.
To validate the elastic net regularization technique, linear equations created by Hilbert matrix
are solved by the proposed regularization method. The matrix AAA has the dimension of 100×100,
and the condition number of AAA is 9.6×1019, which means the system is ill-conditioned. The
true value of xxx satisfies: x(51∼ 61) = 10, and the others are zero. L2 norm regularization, L1
norm regularization and elastic net regularization are all applied in this validation case. The
results shown in Fig. 1 indicate that elastic net regularization yield the best results for this case.
The L2 norm regularization keeps all the solutions non-zero and does not encourage sparsity.
The results of L1 norm regularization cannot show the characteristic of continuous distribution.
Further test shows that when matrix AAA or bbb is contaminated by noise, elastic net regularization
could give better result.

Figure 1: Results of regularization calculation

3 SOURCE LOCALIZATION METHODS

3.1 Methods based on elastic net regularization

The microphone number of the phased array system is assumed to be M. The sound source
scanning region consists of N grid points and each grid point is supposed to be a monopole
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point source. The sound pressure in frequency domain received by the microphones then can
be expressed as

ppp = AAAsss+ eee, ppp ∈ CM,AAA ∈ CM×N ,sss ∈ CN ,eee ∈ CM (5)

where AAA = (aaa1, . . . ,aaaN), aaan = (e− jkrn,1/rn,1, . . . ,e− jkrn,M/rn,M)T is the array response vector, and
rm,n is the distance from the nth sound source scanning grid to the mth array microphone. k is
the wave number, sss is the source waveform, and eee represents the contamination noise. Suppose
that the contamination noise is uncorrelated with the sound sources, the cross spectrum matrix
(CSM) is defined by

GGG = 〈ppppppH〉= AAA〈ssssssH〉AAAH + 〈eeeeeeH〉 (6)

where (·)H denotes the conjugate transpose and 〈·〉 denotes the average value. When the sound
sources are supposed to be uncorrelated with each other, 〈ssssssH〉= diag(q1, . . . ,qn, . . . ,qN), and
qn = 〈snsn

∗〉 is the source power of the nth grid. (6) can be rewritten as linear equations

RRR = HHHQQQ+EEE,RRR ∈ CM2
,HHH ∈ CM2×N ,QQQ ∈ RN ,EEE ∈ CM2

(7)

where

R(i−1)×M+ j = Gi, j,H(i−1)×M+ j,n = Ai,n×A j,n
∗,Qn = qn,E(i−1)×M+ j = 〈ei× e j

∗〉

i, j = 1, . . . ,M,n = 1, . . . ,N

where (·)∗ denotes the complex conjugate of the argument. When the contamination noise is
white Gaussian noise, of which the mean value is zero and variance is σ2 and all are uncorre-
lated, then 〈eeeeeeH〉= σ2III. When the sound sources are correlated, the source covariance matrix
〈ssssssH〉 is not a diagonal matrix, whose off-diagonal element denotes the correlation between
different sources. At this time Eq. (6) can be rewritten as linear equations

RRR = HHHQQQ+EEE,RRR ∈ CM2
,HHH ∈ CM2×N2

,QQQ ∈ CN2
,EEE ∈ CM2

(8)

where

R(i−1)×M+ j = Gi, j,H(i−1)×M+ j,(k−1)×N+l = Ai,k×A j,l
∗,Q(k−1)×N+l = 〈sksl

∗〉

E(i−1)×M+ j = 〈ei× e j
∗〉, i, j = 1, . . . ,M,k, l = 1, . . . ,N

The number of unknown variables of Eq. (8) is much larger than that of Eq. (7).
DAS beamforming estimates the source power of the nth grid by

bn =
1

M2 wwwn
HGGGwwwn (9)

where wwwn represents the steering vector which is defined by

wwwn =
1

rn,o
[rn,1e− jkrn,1, . . . ,rn,me− jkrn,m , . . . ,rn,Me− jkrn,M ]T (10)

where rn,o denotes the distance from the nth grid to the array center. DAMAS algorithm assumes
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that the sources are independent and constructs a linear system of equations that relate the DAS
results to the source power of every scanning grid. The linear equations are b1

. . .
bN

=
1

M2

 |www1
Haaa1|

2
. . . |www1

HaaaN |
2

. . . . . . . . .

|wwwN
Haaa1|

2
. . . |wwwN

HaaaN |
2

 q1
. . .
qN

 (11)

If uniform flow exists in the x direction, the array response and steering vector should be
changed to

an,m =
1

(rD)n,m
e− jk[(rD)n,m−M0(xm−x̃n)]/β 2

,wn,m =
(rD)n,m

(rD)n,o
e− jk[(rD)n,m−M0(xm−x̃n)]/β 2

(12)

where (rD)n,m =
√

(β rn,m)2 +[M0(xm− x̃n)]2,β =
√

1−M0
2, xm is the x-coordinate of mth

microphone and x̃n is the x-coordinate of nth scanning grid.
In general, only a small portion of the source scanning region is expected to possess strong

sources. Therefore, the solution of Eq. (7) and (11) should be sparse. At the same time, the
sources may be isolated point sources or distributed sources and contamination noise can be
strong. L1 norm and L2 norm based elastic net regularization can be a good alternative for this
problem. Furthermore, Matlab toolbox CVX is a useful tool for solving the linear equations
established by elastic net regularization. The unknown variables in Eq. (7) and (11) are real
which represent the sound source power and should be non-negative. The methodology of the
phased microphone array algorithm is illustrated in Fig. 2.

Figure 2: Methodology of phased microphone array algorithms

The regularization parameters are very important to the solutions. However, this parame-
ter is unknown and usually chosen empirically. Since the number of main eigenvalues of the
CSM represents the number of uncorrelated sources, λ1 is chosen according to number of main
eigenvalues of CSM and the SNR (signal-to-noise ratio). Numerical tests show that a good
choice for λ2 is closed equal to (0.1∼ 0.5)λ1. For simplicity, solving Eq. (7) by elastic net
regularization is called L1-L2-CSM, and solving Eq. (11) by elastic net regularization is called
L1-L2-DAMAS.

3.2 Numerical results

In this section, two test cases are presented to validate the feasibility of the proposed sound
source localization methods based on elastic net regularization. Both isolated point sources
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and distributed line source are considered. Furthermore, the validation is also performed under
rather low SNR.

In this section, array shape is the Large Aperture Directional Array (LADA) [7] which
consists 35 microphones. Distance between the source scanning region and the phased ar-
ray is 1.0m. The source scanning region is 1.0m×1.0m, and the scanning grids number is
41×41=1681, uniform spacing. Sampling frequency is 65536Hz and sampling time is 10s. The
frequency domain pressure signals are calculated by Fast Fourier Transform (FFT). FFT is done
with 4096 points and Hanning window is added, of which overlapping ratio is 50 percent.

Firstly, a single frequency point source is simulated with the source power as 10 and fre-
quency as 3200Hz. Time domain signals are simulated without noise. Results of DAS beam-
forming, DAMAS algorithm, L1-L2-DAMAS and L1-L2-CSM are shown in Fig. 3. It is clear
that DAS beamforming suffers from low resolution and the source location and power are cal-
culated accurately by the other three methods.

(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 3: Results of source localization without noise (one source)

Secondly, four uncorrelated broadband point sources and uncorrelated line source are simu-
lated with Gaussian-distributed random numbers. The line source consists of 35 uncorrelated
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point sources. The location of the four uncorrelated point sources is (0,0)m, (0.2,0.2)m, (-
0.2,0.2)m and (0.2,-0.2)m. The power of the four sources is 0.1197, 0.1217, 0.1188, and 0.1203
respectively. The length of the line source is 0.4m, from -0.2m to 0.2m in the x-axis and the
power of the line source is 4.2469. Time domain signals are simulated without noise and other
conditions are the same as previous cases. Since no contamination noise is added, diagonal
removal (DR) technique is not used in this case. Results of DAS beamforming, DAMAS algo-
rithm, L1-L2-DAMAS and L1-L2-CSM are shown in Fig. 4 and Fig. 5. The red circle denotes
the location of the real sound sources. It can be noticed that the sound sources are localized
accurately. In the line source case, the relative error of source power is slightly larger than the
other cases. This might be due to the fact that many sources are not on the source scanning grid
points. This validation case indicates that DAMAS, L1-L2-DAMAS and L1-L2-CSM can be
used to localize isolated point sources and distributed sources as well.

(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 4: Results of source localization without noise (four sources)

The Calculation times of three algorithms are listed in Table 1. DAMAS algorithm iterates
10000 steps in the current case. Obviously that methods based on elastic net regularization is
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(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 5: Results of source localization without noise (line source)

slightly slower than DAMAS algorithm. This is because our code is written in Fortran language
and it needs to call external functions of Matlab to solve the elastic net regularization equations,
which requires extra CPU time.

Table 1: Calculation time

Calculation times(s) DAMAS L1-L2-DAMAS L1-L2-CSM
Four sources 856 936 1196
Line source 603 1024 1079

Finally, methods based on elastic net regularization are tested with rather low SNR. White
Gaussian noise is added to the simulated time domain signals. The SNR is defined by

SNR = 10lg
1
M ∑

M
m=1 E{pm

2}
σn2 (13)
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where E{pm
2} means the average power received by the mth microphone and σn

2 is the vari-
ance of the noise, also is the noise’s average power. Time domain signals are simulated with
SNR =−10dB for the four uncorrelated sources and line source respectively. Diagonal removal
(DR) of CSM technique is used. DAS beamforming, DAMAS algorithm, L1-L2-DAMAS and
L1-L2-CSM are all used to localize these sources. Results are shown in Fig. 6 and Fig. 7. The
locations of real sources are marked by a red circle. The results show that DAS beamforming
is very robust but with low resolution and high sidelobe. DAMAS algorithm would gener-
ate some pseudo sources. L1-L2-DAMAS and L1-L2-CSM lead to better results and the only
disadvantage is that the sound power of the identified sources is smaller than the true value.

The comparison of Fig. 4, Fig. 5, Fig. 6 and Fig. 7 show that L1-L2-DAMAS and L1-L2-CSM
can not only localize isolate point sources, but can also localize distributed sources. Further-
more, these two methods are more robust than DAMAS algorithm when the SNR is rather low.

(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 6: Results of source localization with SNR=−10dB (four sources)
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(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 7: Results of source localization with SNR=−10dB (line source)

4 LOCALIZATION OF NACA0012 AIRFOIL SELF-NOISE SOURCES

In this section, L1-L2-DAMAS and L1-L2-CSM are used to localize NACA0012 airfoil self-
noise sources based on numerical data. Results are compared with those by DAS beamforming
and DAMAS algorithm to demonstrate the advantage of elastic net regularization.

In the numerical simulation, the chord length of the airfoil is 0.1m and the angle of attack is
zero degree. The Reynolds number is 4×105 and the Mach number is 0.17. More details of the
numerical simulation can be referred to [9].

Figure 8 shows the configuration of the virtual phased microphone array in the current work.
The NACA0012 airfoil is placed with its leading edge at the origin of the coordinate system.
Five chords above the airfoil camber line places a phased microphone array. This array system
is composed of virtual microphones that distributed in a straight line from -0.2m to 0.5m. Along
the airfoil camber line from -0.1m to 0.4m, a scanning system that consists of 501 grid points
is configured. Each grid point is considered as a potential monopole source in the phased
array calculations. The region covered by the scanning grid is supposed as the dominant region
responsible for the airfoil self-noise generation.

10



5th Berlin Beamforming Conference 2014 Li, Tong and Jiang

Figure 8: Sketch of the beamforming model

DAS beamforming, DAMAS algorithm, L1-L2-DAMAS and L1-L2-CSM are all used to lo-
calize the NACA0012 airfoil self-noise sources. All the identified source power are normalized
by the maximum value and then displayed in dB. The x-coordinate denotes the streamwise loca-
tion of the noise sources. The y-coordinate represents the frequency of identified noise sources.
The two red solid lines marked by LE and TE denote the location of the airfoil leading and trail-
ing edge respectively. Source localization results are shown in Fig. 9. The main sound source
region is marked by a dashed box. From the results, it is clearly shown that the noise sources
are mainly focused at about 3.4 kHz and the main sources region is located at the trailing edge.
However, DAS beamforming results indicate that there are some sources located at the leading
edge and far from the trailing edge, which is not consistent with many experimental results
[8]. At the same time, the resolution is very low for DAS beamforming. When DAMAS algo-
rithm is applied, resolution is improved, but the pseudo sources still exist. Regarding the results
of L1-L2-DAMAS and L1-L2-CSM, the resolution is found to be improved. Furthermore, the
power of the pseudo source at the leading edge is significantly reduced and other pseudo sources
disappeared.

5 CONCLUSIONS

Elastic net regularization is applied to the phased microphone array technique. Linear equations
established by DAMAS algorithm and CSM are both solved by elastic net regularization. The
numerical validation is conducted both by the isolated uncorrelated point sources and uncorre-
lated line source cases. The two tests both show that methods based on elastic net regularization
can not only improve the resolution and suppress sidelobe, but also obtain better results than
DAMAS algorithm when the SNR is rather low. Furthermore, the advantage of elastic net regu-
larization is demonstrated by the example of NACA0012 airfoil self-noise localization problem.
Results of DAS beamforming, DAMAS algorithm and methods based on elastic net regulariza-
tion all show that the dominant sources are at approximately 3.4 kHz, and mainly located at the
airfoil trailing edge. However, the elastic net regularization can ensure more convincing results.
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(a) DAS (b) DAMAS

(c) L1-L2-DAMAS (d) L1-L2-CSM

Figure 9: Results of NACA0012 airfoil self-noise sources localization
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