BeBeC-2012-29

Berlin Bearnforming Conference 2012

TWO ROBUST SUPER RESOLUTION APPROACHES IN
AEROACOUSTIC IMAGING FOR NEAR-FIELD WIDEBAND
EXTENDED SOURCES

Ning CHU?, Ali MOHAMMAD- DJAFARI and Jos®ICHERAI?
lLaboratoire des signaux et systemes (L2S), CNRS-SUPERERIS SUD
’Département de Signal et Systémes Electroniques (SSBPESEC
91192 GIF-SUR-YVETTE, France

ABSTRACT

Recently deconvolution-based methods, like the DAMAS ehgreatly improved spa-
tial resolutions of the Beamforming in aeroacoustic imggiBut most of existing meth-
ods are not robust to background noise. In this paper, weosmpwo robust super-
resolution approaches using Sparsity Constraint (SC-RBS&Mand Sparse Regularisa-
tion (SR-RDAMAS) respectively to simultaneously estimsgeirce powers and positions,
and the variance of background noise. In proposed SC-RDAMASrsity constraint on
source power is obtained by considering eigenvalue digtdhs of observed covariance
matrix. When sparsity constraint is hard to determine iorggrnoise interference, pro-
posed SR-RDAMAS applying; regularisation with proper regularisation parameter can
greatly improve resolutions and robustness of proposedRBEMAS. Moreover, pro-
posed SC-RDAMAS can work well even if the source number ig-egtimated, but our
SR-RDAMAS does not require source number at all. Proposeitiods are shown to be
robust to noise, wide dynamic range, super resolution aasilfdity to use for near-field
wideband extended source imaging based on 2D non-uniforenoptione array by sim-
ulated and wind tunnel data. Our methods are compared wdlsthte-of-art methods:
Beamforming, DAMAS, Diagonal Removal DAMAS, DAMAS with gpsity constraint,
Covariance Matrix Fitting and CLEAN.

1 INTRODUCTION

Aeroacoustic imaging is a standard technique for mappieddbation and strength of aeroa-
coustic sources with microphone arrays. It provides insiigio noise generating mechanisms,
which is used for designing quieter vehicles and machirarthis paper, we aim to investigate
near-field wideband aeroacoustic imaging of vehicle serfacwind tunnel test based on the
2D Non-Uniform microphone Array (NUA). State-of-art metlware studied and applied in in-
dustry. Beamforming method is fast and simple, but suffemfhigh sidelobes and its spatial
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resolutions are limited especially at low frequencies. Wil Signal Classification (MUSIC)
improves resolutions, but highly depends on&Rand source number. Though the Near-field
Acoustic Hologram (NAH) provides good resolution over emfrequency band, but itis limited
by hologram size and can not work well with sparse array. ThEAN [8] iteratively extracts
strong sources from a beamforming image, but it could noasgp weak sources from severe
background noise. The Deconvolution Approach for Mappihd@ustic Source (DAMAS)
method [EZ] becomes a breakthrough, but it is sensitive tsenand requires large number of
iterations. The DAMAS2 and DAMASS3 accelerate the DAMAS byngsnvariant point spread
function, which inevitably harms resolutions. TheSingular Value Decomposition (SVIﬂ [4]
is proposed to reduce computational complexity and to imgrobustness to noise, but it re-
guires the source number to obtain signal subspace. The CétRaah with sparsity constraint
11] is robust to noise, but is not feasible to use due to hugedsionality of variables. Most
of classical methods suffers at least one of these drawbacks spatial resolutions, sensitive
to background noise, need for source number and high coniughcost.

In order to overcome most of these drawbacks, the main idgaopiosed approaches is to
exploit the sparsity of source spatial distributions. Adelties in this paper are firstly to mod-
ify the original DAMAS method to account for background reyiand then introduce sparsity
constraint on source power to obtain higher resolutiond,farally apply sparse regularization
and select proper regularization parameter to enforcesgpaonstraint and obtain super res-
olutions in poor SNR. The advantages of proposed approahoaust to background noise,
super-resolved imaging and applicable to use in wind tuarpériments with 2D NUA array.

This paper is organized as follows. In Sectidn 2, aeroa@ousiaging formation and its
classical inverse solutions are briefly introduced. We thepose the SC-RDAMAS and SR-
RDAMAS approaches respectively in Sectidn 3. Sedfion 4 desimates performance compar-
isons on simulated and real data. Finally we conclude thempagSection b.

2 FORMULATION OF AEROACOUSTIC IMAGING

2.1 Assumptions

Four necessary assumptions are made: Sources are putetogrally uncorrelated; noise is
Additive Gaussian White Noise (AGWN), independent and idafy distributed (iid); sensors
are omnidirectional with unitary gain; and reverberati@osld be negligible in the anechoic
wind tunnel.

2.2 Forward propagation model

ConsiderM antenna sensors arkl near-field wideband sources = [s;,---,s¢]. And the
scanning plane consists &f (N >> M > K) scanning pointss(f) = [si(f),---,sn(f)]T at
positionsp = [p1,---,pn]" With pp being 3D coordinate of the poimt Each scanning point
could be regarded as a potential source. The total snap$hoteasured by each sensor is
divided intoT segments, where each segment consists giiapshots. Each segment is then
converted intd_ narrow frequency bins by Fourier Transform. Thus for thensegti € [1, T]
and single frequency, | € [1,L], the observed vectasi () = [z1(f)),---,zm(f))]" at antenna

array is modeled:
zi(f) = A(p, fi)si(f) +ei(fr) (1)
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wheree;(f|) is AGWN noise vector at antenna array, aAdp, f|) = [a(p1, fi), - ,a(pn, f))]
is M x N near-field steering matrix, with steering vector:

a,(pm f|> — [ie—jzﬂfl Tn,l7 o ie—jZHﬁ Tn7M]T (2)
rn,l rn7M
wheretnyn is the propagation time from the sounsc¢o antennam, andrp m is the propagation

distance duringmn. Actualr, m andt, m should be corrected according to the refraction in the
wind tunnel as discussed in Sectidn 4.

2.3 Classical inverse solutions
Near-field beamforming

For the given locatiomp, and single frequency, the steering vectod(pp, f) is short asay,.
An estimate of the source powgg locating at the scanning poimtcan be obtained by the
beamforming as: A
y all Ray,
n— ~
1Gnl2
where operatof-)" denotes the conjugate transpo$e] is vector norm; and the beamforming
coefficientay, is:

@)

&n _ [rn7le—]2nf| Tn,l, . ,rnMe—jZnﬁ Tn:M]T (4)

and the estimation of observed covariance mafiis R = %zlezi(ﬁ)zi(ﬁ)H; and R is
modeled as
R=E{z(f)=(f)"} = AX A" + 0’1 (5)

whereo? is noise variance] is the identical matrix; operatdg{-} denotes mathematical ex-
pectation; andX = E{ss"} is source correlation matrix, witle = diag(X) standing for un-
correlated source power vector.

DAMAS [Ei and its improved methods

When total snapshot segment is large enoligh> 1, we getR ~ R. By neglecting noise in
Eq.(8), the DAMAS|[2] method is deduced into:

y=Cx (6)
wherex = [xq,---,xn]T; ¥ = [y1,---,yn] T, and power transferring matri& has the coefficient
~H 12
Cnq = ”‘ﬁgau‘*!' withn,q=1,---,N, andc,, = 1 for anyg= n. Its iterative non-negative solution
is:
n—1 N
Zn=¥n—| > Cogkgt > Cngfg|, %n=0 7)
0=1 g=n+1

The DAMAS is a powerful technique to deconvolve the beamfogwesult and successfully
used by the NASA of USA. However, its biggest drawback is mdiust to noise pollution.
Thus several extended methods have improves the robustitaesDAMAS. Diagonal removal
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DAMAS [2] constrainsdiag{R} = 0 to suppress the noise interference, but it harms the weak
sources; instead of deconvolving the beamforming reswdt@MF with sparsity constrairit [11]
directly estimates both observed covariance maRiand noise variance?, but its variables
matrix are much larger than those of the DAMAS, so the CMF eogws much slower.

3 PROPOSED APPRAOCHES

3.1 Robust DAMAS model

Taking into account of background noise in E§.(5), we getsdiDAMAS model as follows:
y = Cx+ 0%y (8)

wherely = {1,---,1}nx1. TO ameliorate the robustness, noise variance should beatst.
To obtain high resolutions, we apply the sparsity of soupagial distributions: aeroacoustic
sources sparsely lay out on the scanning plane, and theesourober is much fewer than
scanning grids.

3.2 SC-RDAMAS
Based on the robust DAMAS, we propose the SC-RDAMAS approasblve Eq[(B):

{ minm,(ﬂ/(wvaz) = ||y_Cw_021NH% (9)
st. x>0,|z|1<B; ¢?>0

Where 3 represents total source power. 3fis too large, the result would be more dispersed
than expected; if too small, some weak sources would be Posechnique Eb] to determine
B is to normalize each column of the steering maix So thatA satisfiesdiag(A" A) = 1.
Thus total power of uncorrelated source3 i$X ) = Tr(X AHA) =Tr(AX A"), whereTr(.)
denotes matrix trace. Thys = Tr(AX A") is regarded as total source power. SiRes
Hermitian, R can be diagonalized into

R=UAU" (10)

whereU is the unitary matrix, whose columns are eigenvectord®pfand A is a diagonal
matrix, whose diagonal values are eigenvalueRpWith diagonal itema1 > A > --- > A >
Ak41=--- = Aw = 02, whereK is the actual source number. According to ER.(5), we then
have

Tr(R) =Tr(AX A" + 021 = Tr(UNUM) = Tr(A) (11)
Thusf is modeled by

B=Tr(AX A" =Tr(A-o?I) (12)

In practice, is estimated by

A

B =Tr(A - o2I) (13)
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whereA is defined byR = UAU™. For simplicity, 02 = min{Am,m=1,--- ,M} [10]; for a
better initialization|[11],

2=~ % Am (14)

m=K+1

whereK is the estimated source number.

In proposed SC-RDAMAS approach, we apply the property oémiglue distribution to
estimateK. Let A(m) with m=1,--- ;M denote the eigenvalue distribution &, defined
by the M diagonal items ofA, with Ay > A > - > Ak > Aksi1 = = Ay = 2. Since
A(m) is a non-increasing function, the second-order derivativie(m) describes the change
of decreasing rate of (m). From certain poinK, the change approaches zect/)/)((K) ~ 0).
ThusK can be regarded as the estimationkof This conclusion could be explained by the
sparsity fact that\ has much fewer number of source powerKl|f@ << N) than that of noise
powers who are not greatly distinct from each other (for AW@bdIse, noise power is the
same); therefore the curve of eigenvalue distribution hstsoat and steep head, and a long and
smooth tail, which are illustrated in Fig.1 for simulateddeneal data respectively. Figuré 2a
reveals the influence of estimated source number in prope€eBRDAMAS. Under-estimation
of source numbgrl?( < 9) significantly affects the power image reconstructioroety, but
over-estimation > 13) does not affect at all, since proposed SC-RDAMAS camedé the
noise variance and mald relatively small.
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Figure 1: Eigenvalue distributioi (m), first-order (~d'A (m)) and second-order<d’ A (m))
derivatives (from ceiling to bottom) at 2500Hz, y-akign), x-axis m=1,--- ,M.

3.3 SR-RDAMAS

In very poor SNR cases, sparsity constrajpit is not easily to determine according to Eql(13).
To enforce the sparsity constraint, proposed SR-RDAMAS@aggh combines; regularization
with the Least Mean Square (LMS) criterion as follows:

(15)

min, 52 7 (z,0%) = ||y — Cx — 0%1n| 1>+ a| || |1
st. =0, 02>0
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In Eq.(I5), the/; regularization offers more information of sparse disttibn prior than the
sparsity constraint in EQ9) of proposed SC-RDAMAS, esgdgcwhen the forward model
of Eq.(8) is severely interfered by noises. Proposed SR-RBS& approach offers the iterative
non-negative LMS solutions witfy-norm regularization for the system of linear equationse Th
associated inverse algorithm is a convex quadratic progvaioh can be solved efficiently.

For regularization parametew, is selected by using Bayesian interpretation. The pﬂ)er [5]
argued thaio should be proportional to the inverse of the SNR. And [3] aadied thator =
o+/2log(M) with M being the number of antenna. In proposed SR-RDAMA%; selected by
minimizing the power image reconstruction erdpras follows:

a :argnyn(Sz(a) (16)

where &(a) = ||Z(a) — z||3/||z||3 is relative error of power image reconstruction between
original imagex and estimated image. "And &, measures the estimation performances and
sparsity state. In Figl2ly € [—10,—5]dB ([0.1,0.3]) is a proper value region for the proposed
SR-RDAMAS, and since proposed SR-DAMAS can well estimatisengariance, is rela-
tively small even when small value of is selected. Moreover, source number in proposed
SR-RDAMAS is not necessary any more as proposed SC-RDAMAS.

SC-RDAMAS with estimated source number 62 distance with different a for SR-RDAMAS
T T T

-20
o

I I I
10 20 30

I I _20 I I I | | I
40 50 60 70 =30 -25 -20 -15 -5 o 5 10
Estimated source number (K)

-10
a (dB)

(a) 5, VSK (K € [9,13)) in proposed SC-RDAMAS (b) &, VS a in proposed SR-RDAMAS.

Figure 2: Source number estimatihin proposed SC-RDAMAS and selection of regularization
parametera in proposed SR-RDAMAS based on simulations in Sdction 4

Both proposed SC-RDAMAS in E@J(9) and SR-RDAMAS in Egl(15¢ dhe convex
quadratic minimization under linear matrix constraint$iietr can be solved by interior point
methods using MATLAB toolbox SeMuD}[[9].

3.4 Wideband estimation

In wind tunnel experiment, aeroacoustic sources are getehy frictions between the vehicle
and wind flow. Physically, different vehicle parts produderations with different frequencies.
Therefore aeroacoustic sources are near-field widebamndlsigConsider the frequency range
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[ fmin, fmax consisting olL frequency bins. Lek(f}) be the estimation o( f)) in Ith frequency
bin. Then source powets,, over wideband fmin, fmax can be estimated by

1 fmax

dup=1 Yy () (17)

fI = Imin

4 SIMULATIONS AND REAL DATA

In this section, our proposed approaches are compared witle ®f the state-of-art methods
for near-field wideband extended sources imaging on siredland real data respectively. The
simulations and experiments use the same configuratiomdlew.f There are 64 2D NUA array
on vertical plane, whose averaging array apertuge4s2m with longer horizontal aperture, as
shown in Fid.Ba. For NUA array, it yields almost the same genance as the uniform array
with more sensors does as discussed lin [6]. The distanceebrtsource plane and array is
aroundR = 4.50m, thus the beamforming resolutionit= 250Hzis AB~ AR/d = 31cm For
scanning step, we chooA& = 5cmto satisfyAx/AB < 0.2 for any f < 350(Hz, which avoids
the spatial aliasing in the DAMAS[2]. The propagation sp&ed, ~ 340m/s. Results are
illustrated by decibel (dB) images and section profiles.

4.1 Extended sources

An aeroacoustic monopole is the source who radiates isatlhpin all directions. Any source

whose dimensions are much smaller than its wavelength atilhg a monopole. An extended
source is loosely defined as a source consisting of somealipaeparated and temporally
uncorrelated monopoles. In contrast, a coherent sourceagemp of correlated monopoles
who have a constant phase difference between each otheugfitamherent sources are the
ideal model to simulate real directivity patterns, it is #foonsuming to estimate both source
amplitudes and positions, as well as the correlation fonctis discussed inl[1]. Therefore,
extended sources with various patterns are used to sinditatgivity patterns of actual sources.

4.2 Simulations

On simulations, the scanning region is 833%n? and there ardy = 10000 snapshots at the
array. In Fid.4a, there are 4 monopoles and 5 extended sowitle different patterns; their
powers are M8~ 2 (—10.27dB ~ 3.7dB) with 14dB dynamic range. The noise & = 0.85
(—0.7dB), and averagin@NR= 0dB.

The results are shown in Fig.4. The Beamforming just gives $gong sources, since its
resolution atf = 250Hzis AB ~ AR/d = 31cm The DAMAS and SC-DAMAS are sensitive
to the noise. The DR-DAMAS eliminates the noise interfeeeand well estimate the extended
source, but fails to detect weak monopole sources. The CMIFestimates the noise variance,
and obtains better spatial resolutions. However, it losesesof weak sources, and does not
well reconstruct the extended sources. The proposed SCMEAand SR-RDAMAS work
much better than the above methods. They not only bettenatdithe noise variance, but also
better estimate positions and powers of all monopoles atehded sources. From Talile 1



4™ Berlin Beamforming Conference 2012 CHU, DJAFARI and PICHERAL

and(2, averaging estimation errx* clearly shows that our SC-RDAMAS and SR-RDAMAS
approach outperform mentioned classical methods.

Wind tunnecl
L = WVertical
Vertical Siviivag
ante]:lna plain
plain

(a) Wind tunnel S2A[[7]. (b) Overlook and wind tunnel effect.

Figure 3: Configurations of wind tunnel S2A.

Table 1: Power estimation of monopoles and averaging esiimarror Ax* = & $1¢ | [x*, —
x; | with real source powes* = diag{E[s*"s*]}.

Source powers 0.08| 0.18 | 0.98| 0.50| Ax* o)

Beamforming | 1.57| 11.28| 3.51| 2.02| 4.16| 121.93
DAMAS 0 0 0 0O 1044 133
SC-DAMAS 0 0 0 |0.65|/0.35| 0.51
DR-DAMAS 0 0 0.77| 0.23| 0.19| 0.10
CMF 0.09| O 0.80| 0.40| 0.12| 0.04
SC-RDAMAS | 0.09| 0.10 | 1.05| 0.43| 0.06| 0.02
SR-RDAMAS | 0.08| 0.13 | 0.94| 0.45| 0.05| 0.015

4.3 Real data

Figure[3 shows configurations of wind tunnel S2A [7]. The stag region is 135< 470cn?.
There areTy = 524288 snapshotg, = 204 segments. Wideband is 2400— 2600Hz with

B = 21 frequency bins. The results are shown by normalized dB@wavith 1@B span. For
corrections of propagation timg n, and distance, m, we apply equivalent source that antenna
mseems to receive the signal from equivalent sonf@ong a direct linaly ,, during the same
propagation timey n,, as if there is no wind influence, as shown in Eig.3b.

For regularization parameter selection in proposed SR-RBS on real data, we use hybrid
data by adding synthetic sources to the real data, thenaegation parameter is determined
according to EqL.(16). Five synthetic extended sources @iffarent patterns are generated as
seen in the Figl5a, whose total powers are freth5dB to 0dB.
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Table 2: Power estimation of extended source, SNRRIB.

Source powers 2.00| 2.00| 2.00| 2.00| 2.00 | 2.00| Ax*
Beamforming | 2.64| 9.60| 9.70| 9.64 | 11.34| 9.77| 6.78
DAMAS 450|1.25|0.48| 2.54| 0.49 | 1.88| 1.15
DR-DAMAS | 2.15|2.05|1.82|1.83| 2.50 | 1.45| 0.27
SC-DAMAS | 2.29| 0.66| 2.75| 2.06| 0.86 | 2.34| 0.65
CMF 1.36| 2.86| 2.07| 2.09| 1.92 | 1.05| 0.45
SC-RDAMAS | 1.83| 2.00| 2.05| 1.72| 2.16 | 1.95]| 0.12
SR-RDAMAS | 1.94| 1.99|1.98|1.76| 2.10 | 1.91| 0.09

For aeroacoustic imaging on the car side, theFig.5 illtssrthe normalized estimated power
images of various methods at 2509with the span 18B. The beamforming merely gives the
fuzzy image of strong sources around the front wheel, thei@a mirror and the back wheel, as
seen in Fidg.bb; in Figl5c, the DAMAS well deconvolves therhrming image, and discovers
weak sources on the front light, front cover, the top anteamméiside windows; however it also
gets many false targets on the air; the DR-DAMAS eliminatestof the false targets, but
it also harms weak sources, as shown in[Fig.5d; thé Fig.5estmat the CLEAN overcomes
drawbacks of the DAMAS, but unexpected strong points areadetl on the ground; in contrast,
the proposed SC-RDAMAS not only suppress the noise intemfa and obtain more precise
positions and power levels than the above methods, but edsowers all the strong sources and
most of the weak sources, as demonstrated ifFig.5f; sircegdhrsity constraint is determined
by real source numbé¢ = 20 as seen in Figl. 1b, Figure 5g shows the acceptable resaihetd
by SC-RDAMAS on real data ; finally, the Fig.5h reveals that BR-RDAMAS achieves the
best performance of all for synthetic source estimatiomstha noise suppression on the profiles
of wheels and mirrors; and proposed SR-RDAMAS also remowvest of the false targets under
the cars and on the air; the regularization parameter ictgleasa = 0.1 according to the
Eqg.(d18) with the help of synthetic sources. Thereforelfrigiges an expected result achieved
by proposed SR-RDAMAS on real data.

Wideband data

Based on the effectiveness and feasibility at single fraquewe compare the proposed ap-
proaches with the DR-DAMAS and the CLEAN for the near-fieldlelhand data of 2400
260z, as Fid.6 illustrated. Each method obtains a better relsait the correspondent one at
250 zin Fig[8, since the real sources are enforced and the flafhswtargets are suppressed
over the wideband average. The estimations of the DR-DAMABIg[6a are reasonable and
acceptable, but the spatial resolutions are not high enamgtine front wheel and rearview
mirror; Fig[@8b shows that the CLEAN greatly amelioratesr@olutions, but holds some unex-
pected points under the car body; the proposed SC-RDAMASGIGE has the advantages of
the CLEAN, and it gets wide dynamic range of source poweraraddhe front wheel, but not
sparse enough; finally, our SR-RDAMAS in Fif.6d enforcesgbarse state and extracts more
accurate source positions and powers, both for the stroages around the front wheel and
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the weak ones on the mirror and back wheel.

5 CONCLUSION

In this paper, we propose two robust super-resolution agagres with sparsity constraint (SC-
RDAMAS) and sparse regularization (SR-RDAMAS) for nealdi@ideband aeroacoustic ex-
tended source imaging in poor SNR situations. We firstly riyatthie original DAMAS method
to account for background noise, and then introduce sparsiistraint on source power to ob-
tain higher resolutions, and finally apply sparse reguéditn and select proper regularization
parameter to enforce sparsity constraint and obtain s@s@lutions in poor SNR. In the pro-
posed SC-RDAMAS, sparsity constraint on source power isieghfpy using the eigenvalue
distributions; based on the SC-RDAMAS, proposed SR-RDAM#SIlies the/; regularization
with selection of regularization parameter to enforce tharse constraint and achieve super
spatial resolution. Moreover, proposed SC-RDAMAS can weell even if the source number
is over-estimated, but our SR-RDAMAS does not require searanber at all. The advantages
of our method are robust to noise interference, wide dynaamge of estimated powers, su-
per spatial resolutions and feasible to use in the wind tutests based on 2D non-uniform
microphone antenna array. The effectiveness and fedgibiliproposed methods are verified
by comparison with the state-of-art methods: the BeamfognDAMAS, DR-DAMAS, SC-
DAMAS, CMF and CLEAN. Our methods are applicable in the marle@and extended source
imaging on simulated and real data offered by Renault SASe€lect sparser priors and adap-
tively estimate hyper-parameter (forward model paranseternor model parameters etc.), we
are investigating a Bayesian inference approach.
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Figure 4: Simulation on extended sources, re&l= 0.85, SNR= 0 dB, imaging a2500H z.
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(a) Synthetic sources with different forms.
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(g) SC-RDAMAS on real data
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(h) SR-RDAMAS on hybrid data.
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Figure 5: Results on hybrid data and on real data, imagin@a®tHz.
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(b) proposed SR-RDAMAS

Figure 6: Wideband data ovel2400 2600Hz, 10dB span
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