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ABSTRACT

In beamforming applications where the acoustic source is moving relative to the microphone
array, the sidelobes are frequency shifted with respect to the frequency of the source. Further-
more the shape of the beamforming pattern is modified compared to that of the static case at the
same position. Provided these two effects are predicted, the DAMAS deconvolution method
developed for wind tunnel tests can be modified and applied to aircraft flyovers. While beam-
forming gives a qualitative information about the noise emission, the deconvolution method
enables to quantify separately the level of the sources. In the present paper a solution is given
which approximates the point-spread function in the frequency domain. The agreement with
simulations is very good for the prediction of the frequency shift and reasonably good for the
pattern shape.

1 INTRODUCTION

The determination of the absolute amplitude of acoustic sources with the help of the beamforming
technique is the objective of the present study. The special case for which the sources are moving
relative to the microphone array is investigated. Acoustic flyover tests of civil aircraft in landing
configuration (cf Fig. 1) is the example of application motivating this work. Unlike with the clas-
sical beamforming method, the deconvolution method presented by Brooks and Humphreys [1]
is a quantitative method. It enables the determination of the absolute level of aerodynamic noise
sources. A first modification and application of this method for broadband noise moving sources
was presented by Guérin, Weckmüller and Michel [3]. It includes a modification of the point-
spread function to take into account the Doppler frequency shift and relies on the assumption that
acoustic energy is equally exchanged between neighbouring frequency bands. Since the acoustic
signature of modern civil aircraft is dominated by broadband noise (unless the engines are running
at high speeds like for take-off) this method provides very good results when applied to real data.
The process of analysis between the measurements and the final assessment of the amplitude of the
aircraft source components is described in Fig. 2. The following operations are performed until a
source breakdown is obtained.
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Figure 1: Aircraft flyover.

• The raw data (microphone pressure signals, microphone positions, and aircraft trajectories)
are measured and recorded. These data are post-processed as follows.

• The microphone signals and aircraft trajectories are synchronised via GPS time.

• The microphone signals are delayed and summed following the classical rules of beamform-
ing. At this stage of the analysis, acoustic maps of the aircraft are generated. These maps
allow only a qualitative description of the noise emission.

• After the point-spread function (or array response) is estimated, the beamforming results are
deconvoluted in the frequency-domain. The solution is obtained by solving a least-square
problem.

• Zones of integration are defined for each one of the potential noise components of the air-
craft. The pressure is energetically summed over each zone. The different noise components
can be ranked if necessary.

In some measurements, one of the aircraft components (for instance the engines, the landing
gear, or the high-lift devices) radiates a tone with an amplitude several decibels higher than broad-
band noise. In this case the assumption of equal energy transfer between the neighbouring fre-
quency bands is no more valid. This paper proposes a solution to handle with this situation. The
solution consists in solving the least-square problem simultaneously over several frequency bands.
A necessary condition to apply this technique is that the effects of motion on the point-spread
function are well predicted.

The point-spread function represents the array response at focus point ~xf to an acoustic
monopole at position ~xs. Unlike for static sources, the sidelobes are frequency shifted when
~xf 6= ~xs. Furthermore, the shape of the pattern is modified compared to that of the static case
at the same position. The main focus of the present study is to reconstruct analytically the point-
spread function in the frequency domain for moving sources.
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Figure 2: Beamforming analysis of aircraft flyovers.

2 BEAMFORMING

2.1 Time-domain formulation

The analysis begins with the calculation of acoustic maps using the beamforming technique. In or-
der to take into consideration the source motion, the classical time-domain formulation is applied,

bf (te) =
M∑

m=1

Rfm(te)

Rref
wmpm

(
te +

Rfm(te)

c0

)
, (1)

where

bf is the time-domain beamforming solution at focus point F ,
te the emission time,
pm the signal of the m-th microphone dedopplerised relative to focus point F ,
Rfm the distance between the focus point F and the m-th microphone,
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Rref the distance of normalisation,
M the number of microphones,
c0 the ambient speed of sound, and
wm a weighting factor.

Additional corrections for ground reflection, atmospheric attenuation, convective amplification,
and so on are not included in Eq. (1). The dedopplerisation supposes that the original microphone
signals are resampled. The results presented hereafter were calculated with a linear interpolator.
For moving sources, the distance Rfm(te) is not constant and therefore needs to be new calculated
for every time step te. The weighting factors wm are used to change artificially the microphone
distribution so that the resolution of the acoustic maps is improved. These factors must verify the
following relationship,

M∑
m=1

wm = 1. (2)

A spectral representation of the time-domain beamforming solution is obtained by Fourier trans-
formation. At the discrete frequency ωk, the spectrum Bf ≡ b2f,rms is given by

Bf ≡ b2f,rms(ωk) = 2〈b̂∗f (ωk)b̂f (ωk)〉 (3)

where b̂f is the Fast Fourier transform of bf , the superscript (∗) denotes the complex conjugate, and
k = {1, 2, · · ·KFFT/2} with KFFT the FFT block size.

2.2 Case of a harmonic point source moving at constant speed

2.2.1 Kinematics

In order to predict the frequency shift of the sidelobes, the case of a harmonic point source moving
at constant speed (along a rectilinear trajectory) is considered. A system of coordinates (O, ~x, ~y, ~z)
is introduced in whichO represents the origin. The system (O, ~x, ~y, ~z) is orthonormal and positive.

The position M of a microphone is given by,

−−→
OM = xm~x+ ym~y + zm~z. (4)

Assuming a trajectory of constant speed ~U , the source position at any time t is simply,

−→
OS(t) = xs(t)~x+ ys(t)~y + zs(t)~z

= (x0 + Uxt)~x+ (y0 + Uyt)~y + (z0 + Uzt)~z,
(5)

where (x0, y0, z0) corresponds to the source position at time t = 0.
The sound pressure measured by the microphone at time t was actually emitted at retarded time

(or emission time) te,
te = t−Rs/c0. (6)

The distance Rs is calculated between the source and the microphone at te defined by

Rs = ‖
−−−−−→
S(te)M‖. (7)

Let us now simplify the problem. The source is moving on a trajectory parallel to the x-axis, i.e.
Ux = U , Uy = 0, and Uz = 0, and at subsonic speed (U < c0). The following relationships are
verified [5].

Rs =
M0(xm − x0 − Ut) + r1

(1−M2
0 )

, (8)
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with
r1 =

√
(xm − x0 − Ut)2 + (1−M2

0 )r2
0, (9)

r2
0 = (ym − y0)

2 + (zm − z0)
2, (10)

and,
M0 = U/c0. (11)

It can also be demonstrated that Rs, r1 and cosψs are related by,

r1 = Rs(1−M0 cosψs). (12)

The angle ψs is defined between the direction of motion and the direction between the source and
the microphone. The cosine of ψs is given by the scalar product

cosψs =

−−−−−→
S(te)M · ~U
‖
−−−−−→
S(te)M‖‖~U‖

. (13)

A combination of the previous equations yields also the important relationship

1

c0

dRs

dt
= − M0 cosψs

1−M0 cosψs

. (14)

2.2.2 Signal at microphone

Now suppose that the source is harmonic of frequency ωs. The pressure measured by a microphone
is of the form

p(t) =
1

Rs

cos [ωs(t−Rs/c0)] . (15)

The frequency of this microphone signal is changing continuously with time due to motion. Ap-
plying Eq. (14), the frequency ω of the signal p(t) can be determined,

ω =
dφ
dt

= ωs

(
1− 1

c0

dRs

dt

)
=

ωs

1−M0 cosψs

. (16)

The term Df = 1/(1−M0 cosψs) represents the well-known Doppler frequency shift.

2.2.3 Dedopplerised microphone signal

In beamforming, the microphone signals are first dedopplerised with regards to the same focus
point F , and then summed. The dedopplerisation represents a correction of the phase and ampli-
tude of each signal based on the distance Rf between the focus point and the microphone,

Rf = ‖
−−−−−→
F(te)M‖. (17)

The signal produced by a harmonic point-source S dedopplerised with regards to a given focus
point F is

bf (te) =
Rf

Rs

cos [ωs(te +Rf/c0)]

=
Rf

Rs

cos [ωs(t−Rs/c0 +Rf/c0)] .
(18)

The frequency ωf of the dedopplerised signal is given by

ωf =
dφ
dt

= ωs

(
1− 1

c0

dRs

dt
+

1

c0

dRf

dt

)
. (19)
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Using Eq. (14), the exact ratio between the frequency ωs at source and the frequency ωf at focus
point is found to be

ωf

ωs

=
1− 2M0 cosψf +M2

0 cosψs cosψf

(1−M0 cosψs)(1−M0 cosψf )
. (20)

If ψs 6= ψf , then ωf 6= ωs. (If ψs = ψf , then ωf = ωs.) This demonstrates why the sidelobes are
frequency shifted for moving sources. Eq. (20) can be rewritten as follows.

ωf

ωs

=
1−M0 cosψf

1−M0 cosψs

+
M2

0 (cosψf cosψs − cos2 ψf )

(1−M0 cosψs)(1−M0 cosψf )
. (21)

The second term of Eq. (21) can be neglected for relative small Mach number M0. Then Eq. (20)
becomes

ωf

ωs

' 1−M0 cosψf

1−M0 cosψs

=
Dfs

Dff

. (22)

U = 0 m/s, ψsc = 60◦ U = 0 m/s, ψsc = 90◦ U = 0 m/s, ψsc = 120◦

U = 80 m/s, ψ̄sc = 60◦ U = 80 m/s, ψ̄sc = 90◦ U = 80 m/s, ψ̄sc = 120◦

Figure 3: Beamforming solution for a point source at altitude 200 m. The simulations were per-
formed with a harmonic source of frequency 1 kHz detected by a line array of 15 m length com-
posed of 101 equidistant microphones. For the moving case (maps on the bottom), the angle ψsc

between the source and the array center varies approximately between ψ̄sc − 5◦ and ψ̄sc + 5◦ with
ψ̄sc = 60◦, 90◦, or 120◦. The black lines represent the predicted frequency shift determined with
Eq. (20). The angle ψ̄fc between the array center and the middle position of the focus point was
applied in the formula.

An example of sidelobe frequency shift is illustrated in Fig. 3 for a point source at 200 m moving
at 80 m/s. With motion the sidelobes are changing of frequency which does not happen for the
static case. This frequency shift is very well predicted using Eq. (20) when the array center and
the middle position of the focus point are taken to determine ψs and ψf .
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Figure 4: Evolution of the Doppler frequency shift ratio Dfs/Dff for the two points at the extrem-
ities of the scanning plane. The superscripts (’) and (”) denote the position at the beginning and
the end of the time interval, respectively. The middle position (given without superscript) corre-
sponds to the time at which the angle between the center of the scanning plane and the center of
the microphone array is equal to 60◦, 90◦, or 120◦. The small and the large grey zones correspond
to an aperture of 10◦ and 20◦, respectively.

The Doppler frequency shift is a function of time: this implies that an averaged value is chosen.
In Fig. 4, the evolution of the Doppler ratio Dfs/Dff for the two points at the extremities of
the scanning plane is represented in function of the angle ψcg, where G represents also the source
position here (i.e. G = S). That ratio is changing rapidly as shown on the graphics on the right-
hand side. One can anticipate on the rest of the study and say that the smaller is the aperture (the
”shutter speed”), the better can be approximated the point-spread function.

3 RECONSTRUCTION OF THE POINT-SPREAD FUNCTION

3.1 Static sources (without motion)

For an aerodynamic broadband noise source whose position is fixed relative to the microphone
array, the square of the pressure amplitude σ of a set of F monopoles modelling the source re-
gion can be restored from the output Bf of beamforming by solving the following least square
problem [1, 2]

C(σ) =
F∑

f=1

(
F∑

s=1

Hfsσs −Bf

)2

.

σs ≥ 0

(23)

H is the matrix of point-spread functions. The indices s and f correspond to the source and the
focus position, respectively. The following comments are given:

• Eq. (23) is solved separately for each frequency band.

• The monopole sources are assumed to be uncorrelated.

• The number of monopole sources and focus points are equal: the matrix H is square.

• All the values are positive real numbers.
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• The constraint σs ≥ 0 imposes that the square of the amplitude of the source is positive. (A
negative value would not be physical.)

As already mentioned the point-spread function Hfs corresponds to the beamforming solution
obtained for a single point source of unit amplitude. In other words Hfs and b2f,rms (defined in
Eq. (3)) are strictly equal when the source is a single point source of unit amplitude. One can show
that the frequency domain point-spread function for a static source verifies [3]

Hfs(ω) =

∣∣∣∣∣
M∑

m=1

wm
Rfm

Rsm

e−ik(Rfm−Rsm)

∣∣∣∣∣
2

. (24)

The index m is an index for the microphones, M is the total number of microphones, and k(=
ω/c0) the wavenumber. For the static case described in legend of Fig. 3, we have compared the
beamforming pattern calculated with Eq. (1) and the point-spread function calculated with Eq. (24).
The results are shown in Fig. 5 for two angles ψsc = 90◦ and 60◦. The two solutions agree very
well and this for both angles. The discrepancy at the transition between two sidelobes could result
from the resampling of the time signals which introduces some noise in the beamforming solution
when the relationship between the source frequency ωs and the resampling frequency ωres does
not verify ωf � ωres [4].

90◦ 60◦

Figure 5: Comparison between beamforming, point-spread function and deconvolution for the
case without motion described in legend of Fig. 3.

Using the modified Gauss-Seidel algorithm presented by Brooks and Humphreys [1], the least-
square problem of Eq. (23) was solved so that a solution for the source amplitude can be deter-
mined. The results are shown in green in Fig. 5. At 90◦, the position and the amplitude of the
source are both very well recovered. At 60◦, the main energy is concentrated at three positions
around the source. Clearly the fact that the beamwidth is larger has induced a loss of accuracy in
the determination of the source position. The results remain however very satisfactory.
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3.2 Moving sources

Because of the frequency shift on the sidelobes, an integration over frequency must be somehow
introduced in the problem. The following relationship is verified by beamforming for a problem
discretized in space and continuous in frequency,

Bf (ωf ) =
1

ωres/2

∫ ωres/2

ωs=0

F∑
s=1

H̃fs(ωs, ωf )σs(ωs)dωs, (25)

with

H̃fs(ωs, ωf ) =


0 if

ωf

ωs

6= Dfs

Dff

Hfs(ωs, ωf ) if
ωf

ωs

=
Dfs

Dff

.
(26)

The low Mach number hypothesis was considered in Eq. (26) for the estimation of the frequency
shift. The main difference to the static case is that the solution must be solved simultaneously in
space and frequency for moving sources.

In real applications, the frequencies are multiples of the frequency bandwidth ∆ωres =
ωres/KFFT. The following relationships are substituted to Eq. (25) and (26)

Bf (ω
d
f ) =

ωd
max∑

ωd
s=ωd

min

F∑
s=1

H̃fs(ω
d
s , ω

d
f )σs(ω

d
s ) with ωd

s , ω
d
f ∈ [ωd

min : ωd
max], (27)

with

H̃fs(ω
d
s , ω

d
f ) =


0 if ωd

s

Dfs

Dff

3
[
ωd

f −
∆ωres

2
: ωd

f +
∆ωres

2

]

Hfs(ω
d
s , ω

d
f ) if ωd

s

Dfs

Dff

∈
[
ωd

f −
∆ωres

2
: ωd

f +
∆ωres

2

] (28)

The frequencies ωd
min and ωd

max delimitate the interval of integration for frequency. This interval
could correspond for example to the range of frequency over which the sidelobes are shifted.
Eq. (23) becomes

C(σ) =

ωd
max∑

ωd
f=ωd

min

F∑
f=1

 ωd
max∑

ωd
s=ωd

min

F∑
s=1

H̃fs(ω
d
s , ω

d
f )σs(ω

d
s )−Bf (ω

d
f )

2

.

σs ≥ 0

(29)

The amplitude of the point-spread function is now approximated by

Hfs(ω) =

∣∣∣∣∣
M∑

m=1

wm
rmf

rms

eikDfms(rmf−rms)

∣∣∣∣∣
2

. (30)

Compared to Eq. (24), the source wavenumber is replaced by the wavenumber of the signal arriving
at the microphones. This solution is better than that proposed by Guérin et al. [3] in which the
Doppler frequency shift factor was taken between the source and the array center.

For our test case, the simulated and the approximated point-spread functions are compared in
Fig 6. The patterns corresponding to beamforming were extracted along the black lines drawn in
Fig. 3.
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60◦ 90◦

120◦

Figure 6: Frequency-domain reconstruction of the point-spread function for our reference example
with motion.

The main lobe is very well reconstructed at the three angles. The number of sidelobes and their
positions are correctly predicted too, but their amplitude can be underestimated. It appears that
energy is slightly smeared between the sidelobes. As a conclusion, some error is introduced when
the solution of the point spread function in the frequency domain for moving sources is analytically
calculated using Eq. (30).

Keeping that error in mind, the method of deconvolution given by Eq. (29) was applied to the
present test case. The results are shown in Fig. 7 for ψ = 60◦. One observes that the source is
not as well recovered as for the static case. However the results are so that most of the energy is
concentrated in the vicinity of the source which is encouraging.
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beamforming

deconvolution

Figure 7: Beamforming vs deconvolution (moving case at 60◦).

4 CONCLUSIONS

In order to determine the amplitude of the tonal source when it moves, the DAMAS method was
adapted so that now the frequency shift on the sidelobes is taken into account in the formulation
of the least-square problem. The modification of the beamforming pattern related to motion was
also accounted for. At the end, the problem could be solved at the expense of an increase of the
computing time and need in memory. Further testing with real data is necessary to validate the
method.
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