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ABSTRACT 
Frequency domain beamforming relies on the array Cross Spectral Matrix (CSM). In 

many cases, typified by windy aeroacoustics tests, the CSM is contaminated by 
interfering noise on the diagonal. The noise in these matrix elements be can excluded 
from the beamforming results by not using those values, with or without compensating by 
adjusting the algorithm. Some algorithms, such as Functional Beamforming however, are 
best suited to a compete CSM. A new method is given here for estimating the diagonal 
elements of a CSM from the off-diagonal elements on the basis that the corrected 
diagonal elements should be minimal, subject to the constraint that the adjusted CSM 
must be nonnegative. The algorithm is simple and practical. It does not require 
knowledge of the array design or steering vectors. It uses multiple calls to an eigenvalue 
code and a linear programming code during iteration. An example of the performance of 
the method for a case with 24 microphone array, a single loudspeaker source, and severe 
wind noise is given.  

 
 

1 INTRODUCTION  
Beamforming tests in aeroacoustics are often performed in windy locations. The signal for 
each microphone can be contaminated by the effects of turbulent pressure fluctuations near 
the microphone. The resulting microphone “self noise” increases the diagonal elements of the 
array Cross Spectral Matrix (CSM). In extreme cases, such as in-flow arrays in wind tunnel 
tests, the self noise can 20 dB or more higher than the level of the acoustic sources of interest. 
[1]. If conventional Frequency Domain Beamforming (FDBF) is performed with the self 
noise included in the CSM, then the resulting beamform maps have compressed dynamic 
range and unreliable peak levels. One approach to self noise is to reduce it physically by 
recessing the array behind a fabric screen or foam rubber sheet to create a gap between the 
boundary layer and the and microphones [2-4]. This can be effective, but can also be difficult 
to implement, does not fully remove the self noise, and complicates the  acoustic propagation. 
Another possibility is to measure the background CSM, perhaps with the wind tunnel model 
removed or placed in a quiet configuration, and subtract it from the data CSM [5,6].  
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With without physical wind noise abatement or measurement, the compact location of self 
noise on the diagonal of the CSM creates a temptation to try to remove its effect 
mathematically. The simplest approach is to ignore the diagonal elements of the CSM in 
beamforming [1]. In the case of FDBF, deleting the diagonal of the CSM can substantially 
improve the appearance of the beamform maps, but it causes several problems, including 
some negative powers in the source maps and questions about the accuracy of the peak levels. 
Some advanced beamforming algorithms such as Functional Beamforming [7,8], depend on 
the complete CSM, and diagonal deletion can create particularly unreliable results. It is 
possible to modify deconvolution processing algorithms to operate without the diagonal CSM 
elements, and even estimate the self noise separately from the acoustic sources as part of a 
deconvolution method if desired [9-12]. This approach is can be computationally intensive 
and depends on knowledge of the steering vectors or equivalent information for all of the 
important acoustic sources. A new alternative for modifying the CSM directly, without 
knowledge of the steering vectors is presented below. It reduces the diagonal elements less 
drastically than replacing them by zero. The modified CSM is constrained to be nonnegative, 
which is a theoretical requirement for a CSM.  

1.1 Structure of the Cross Spectral Matrix  
Suppose there are 𝑁 microphones and 𝑀 mutually incoherent acoustic sources with 

narrowband source functions 𝑞! 𝑡 , 𝑗 = 1,… ,𝑀.  Each micropone, 𝑖, measures the sum of the 
acoustic the acoustic waves, and, in addition, self noise 𝑛! 𝑡 . The model for the narrowband 
array pressure 𝑁-vector, 𝒑 𝑡  is  

 

𝒑 𝑡 = 𝑞! 𝑡 𝒈!

!

!!!

  +       𝒏 𝑡                                                                                                                     (1) 

 
where the 𝒈! are the normalized array steering vectors for the sources. The strength of source 
𝑗 is defined as the expected value  𝑠! = 𝐸 𝑞!

! , 𝑗 = 1,… ,𝑀. The mutual incoherence of the 
sources is expressed as 𝐸 𝑞!∗𝑞! = 0, 𝑘 ≠ 𝑗. The self noise functions are assumed to be 
mutually incoherent and also incoherent with the acoustic sources. The self noise power for 
microphone 𝑖 is 𝛾! = 𝐸 𝑛! ! , 𝑖 = 1,… ,𝑁.  

The 𝑁×𝑁 CSM is 𝐁 = E 𝒑𝒑′ . The model assumptions give 
 

𝐁 = 𝑠!𝒈!𝒈!!
!

!!!

+ 𝛾!𝒆!𝒆!!
!

!!!

                                                                                                                            (2) 

 
where  𝒆! = 0,… ,0,1,0,… ,0 ! with the 1 in postion 𝑖 , 1 ≤ 𝑖 ≤ 𝑁. 

A nonzero, complex, 𝑁-vector, 𝒗, is said to be normalized if 𝒗!𝒗 = 1. Let 𝐁 be a  
Hermitian matrix. 𝐁 is said to be nonnegative (𝐁 ≥ 0) if its minimum eigenvalue, 𝜆min 𝐁 , is 
nonnegative. The minimum eigenvalue can be expressed as the  Rayleigh quotient, 

 
𝜆min 𝐁 =    min

𝒗!𝒗 = 1  𝒗
!𝐁𝒗                                                                                                                                (3) 
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By construction, 𝐁  is Hermitian. For any normalized 𝒗,  

𝒗!𝐁𝒗 = 𝑠! 𝒈!!𝒗
!

!

!!!

+ 𝛾! 𝑣𝒊 !
!

!!!

                                                                                                                  (4) 

 
Since all of the terms are nonnegative, this shows 𝐁 ≥ 0.  

1.2 Mathematical goal 
Let 𝐁 ≥  0 be a Hermitian matrix. The mathematical problem is to partition 𝐁  into two 

parts: 
𝐁 = 𝐂+ diag 𝒙                                                                                                                                             (5)   

 
where 𝒙 = 𝑥!,… , 𝑥! ! is a vector whose elements are real and nonnegative and 𝐂 is 
Hermitian. The basis of the partition is that 𝑥! +⋯+ 𝑥! = tr diag 𝒙  is maximized subject 
to the constraint 𝐂 ≥ 0. 

1.3 Relationship of the mathematical solution to the CSM 
The measured CSM is 𝐁 = 𝐂! + diag 𝜸    where 𝜸 = 𝛾!,… , 𝛾! ! and  
 

𝐂!   = 𝑠!𝒈!𝒈!!
!

!!!

                                                                                                                                                (6) 

 
If the mathematical partition is applied to 𝐁, then 𝐂+ diag 𝒙 =   𝐂! + diag 𝜸 . In the 

mathematical statement, 𝒙 is maximized (and therefore the diagonal elements of 𝐂 are 
minimized), subject to the constraint 𝐂 ≥ 0. 

Suppose the number of acoustic sources, 𝑀, is smaller than the number of microphones, 𝑁. 
Then 𝒈!  cannot span ℂ!, so there must be a vector 𝒗 ∈ ker 𝐂!  such that 𝒗!𝐂!𝒗 = 0. 
Applying this to the two expressions for 𝐁 and using 𝐂 ≥ 0 gives  

 

𝛾! − 𝑥! 𝑣𝒊 !
!

!!!

≥ 0.                                                                                                                          (7) 

 
In the maximization of 𝒙, the result does not exceed 𝜸 in the direction 𝑣! !,… , 𝑣! ! !. 

This does not prove that 𝒙 = 𝜸, but it constrains the error. The larger the dimension of 
ker 𝐂! , the more constraints can be derived in this way and the more accurate the partition is 
guaranteed to be. The question of determining the circumstances under which it can be shown 
that 𝒙 = 𝜸 is an interesting problem. 
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2 ALGORITHM 

2.1 Outline 
Consider a real 𝑁-vector, 𝒙, with each element, 𝑥! is constrained to the interval 0,𝐵!! . 

Here 𝐵!! is the 𝑖th diagonal element of 𝐁. Subtracting 𝒙 from the diagonal of 𝐁 gives a 
candidate for 𝐂 = 𝐁− diag 𝒙 . The plan is to begin with 𝒙 = 0  and increase 𝒙 as much as 
possble, subject to the constraint 𝐁− diag 𝒙 ≥ 0.  

An iterative algorithm is used to find 𝒙. An expanding set of 𝐾 normalized trial vectors 
𝒗! , 𝑘 = 1,… ,𝐾  is constructed, initialized with 𝐾 = 𝑁 and 𝒗 =    𝑒!,… , 𝑒! . There is a 

tentative result 𝐂, initilazed to 𝐁. At each step in the iteration, each of the 𝒗! is used to 
express the inequality 

 
𝒗𝒌! 𝐁− diag 𝒙 𝒗𝒌 ≥ 0                                                                                                                (8) 

 
as a linear constraint on  𝒙: 

 

𝐴!"𝑥!

!

!!!

≤ 𝑏!  , k   =   1,… ,K                                                                                                (9) 

 
where 𝐴!" = 𝑣!" ! (𝑣!" is element 𝑖 of trial vector 𝑘), and 𝑏!   = 𝒗𝒌!𝐁𝒗𝒌. A 𝐾×𝑁 matrix 
𝐀 = 𝐴!"  and a 𝐾-vector 𝑏 = 𝑏!,… , 𝑏! ! are constructed. The linear programming problem 
“maximize 𝑥! +⋯+ 𝑥! subject to 𝒙 ≥ 0 and 𝐀𝒙   ≤ 𝒃” is solved by the simplex method to 
find an updated tentative solution, 𝒙. The initial vectors in 𝒗  ensure that 𝑥! ≤ 𝐵!!. The 
tentative matix 𝐂 is updated by replacing its diagonal elements by 𝐵!! − 𝑥!, 𝑖 = 1,… ,𝑁. The 
spectral decomposition of the updated 𝐂 is computed and the eigenvectors are added to 𝒗  
for the next iteration. If the algorithm has not converged, then 𝐂 is likely to have some 
negative eigenvalues. Including the corresponding eigenvectors in 𝒗  ensures that, going 
forward, 𝐂 will not have negative eigenvectors in those directions. The algorithm continues 
with the expanded set of constraints until a predefined number of iterations have been 
completed or a convergence criterion is satisfied. Suitable convergence criteria might be that 
𝒙 is changing slowly or that 𝐂 has no eigenvalues smaller than a certain limit.  

2.2 Diagonal optimization algorithm 
This algorithm to partition 𝐁 into 𝐂+ diag 𝒙  makes use of a linear programming solver 

LPsolve 𝐴, 𝑏, 𝑐  that finds 𝒙 ≥ 0 to maximize 𝐜 ∙ 𝒙 subject to 𝐀𝒙   ≤ 𝒃. It also requires an 
eigenvalue solver for Hermitian matrices. The inputs are 𝐁 and a predefined number of 
iterations, nIter. 
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CSM Diagonal Optimization 
 
Input 𝐁 and nIter; 
int N = dim(𝐁); 
𝐂 ← 𝐁 ; 
𝒗 ←    𝑒!,… , 𝑒!  ; 

double[N] c = new double[]{1,…,1}; 
for(int iter = 1; iter ≤ nIter; iter++){ 

int Nv = size( 𝒗 ); 
 double[][] A = new double[nV][N]; 
 double[] b = new double[nV]; 
 for(int k = 1; k ≤nV; k++){ 
  𝒗! ← 𝒗 [k]; 
  for(int i = 1; i ≤N; i++){ 
   A[k][i] = 𝒗! !

! ; 
  } 
  b[k] = 𝒗!′𝐁𝒗!; 
 } 
 double[] x = LPsolve 𝐴, 𝑏, 𝑐 ; 
 for(int i = 1; i ≤N; i++)𝐂𝒊𝒊 ← 𝐁𝒊𝒊 − x[i]; 
 𝒗 ←    𝒗 ∪   eigenvectors 𝐂 ; 
} 
return 𝐂 and x; 

3 EXAMPLE 
An example test setup is shown in Fig. 1. A 24 element planar microphone array 

(“OptiNav Array 24 Jr.”)  was configured to image a loudspeaker at a distance of 1 m. A fan-
driven air nozzle was arranged so that the jet impinged obliquely on the array face, as shown 
on in Fig. 1. The microphones in Array 24 Jr. are electret capsules that are recessed below 
small holes in the sheet metal plate that forms the array surface. A broadband signal generator 
was connected to the speaker and adjusted so the that the level from the speaker was 
considerably lower than the wind noise. Data were acquired for 15 seconds for each 
condition. Results are presented here for two conditions: speaker alone, and speaker with 
wind. The objective for the beamforming is to be able to measure the level from the speaker 
using the data set that is contaminated by wind noise. The processing was performed in 41 
1/12 octave bands from 1-10 kHz.  

3.1 Array spectra with and without wind 
Spectra from all 24 microphones with the speaker on and the wind off are given in Fig. 2. 

There is about 6 dB of scatter between the microphones, so a CSM diagonal reconstruction 
method that assumed that all the microphone levels were the same would not be accurate. The 
corresponding plot for both the speaker and the wind operating is given in Fig. 3.  

The increase in SPL due to turning on the wind is shown in Fig. 4. The amount of increase 
varies dramatically over the array with a 30 dB range. The common assumption that the self 
noise is equal in all of the channels would clearly be wrong here. Four of the microphones, 
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numbers 12, 17, 20, and 22 were less impacted by the wind than the others. These are all near 
the bottom of the array, suggesting that the difference was, in part, caused by a jet pointing 
error. 

The legend is not shown in Figs. 2-4 because it was too large to fit, but Microphone 1 is 
indicated by the heavier line. The microphone is used as the reference in the subsequent 
analysis. 

3.2 Beamforming results 
The two data sets were analyzed in using FDBF and an improved version of Functional 

Beamforming which does not suffer from the reduction in peak level that is seen in the 
original method. The FB parameter 𝜈 was set to 100. The CSM data for the beamforming was 
either the raw CSM including the self noise, the CSM with the diagonal elements set to 0 
(diagonal deletion), or the result of iterative diagonal optimization. The number of iterations 
for the optimization was fixed at 100. The total computer time to process the 41 bands in a 
spectrum (starting from the raw CSM, which took a few seconds to compute from the time 
series data) was 136 s for FDBF without diagonal optimization, 208 s for FDBF with diagonal 
optimization, 86 s for Functional Beamforming with out diagonal optimization, and 160 s for 
Functional Beamforming with diagonal optimization. Functional Beamforming is faster than 
FDBF in the processing code (Beamform Interactive) because it is implemented more 
efficiently. 

3.2.1 Beamform maps 
Beamform maps for thee selected frequencies are shown in Fig. 5 (2 kHz), 6 (4 kHz) and   

7 (8 kHz). Figs. 5a, 6a, and 7a show FDBF and Figs. 5b, 6b, and 7b show FB. In each figure, 
the left column is for the speaker alone and the right column pertains to the speaker and wind. 
The three rows correspond to the treatment of the CSM diagonal: retain (raw CSM), delete, or 
optimize.  

None of the methods had any trouble locating the speaker with no wind, although the FB 
plots are sharper than the FDBF case. FDBF with wind and the raw CSM (upper right plot) 
has very poor dynamic range, as expected. FB has better dynamic range than FDBF with the 
raw CSM. For both FDBF and FB, the CSM treatment that gives the sharpest images with 
wind is diagonal deletion. The images with wind and CSM optimization appear sharper than 
the raw CSM plots with wind, but not as sharp as the diagonal deletion plots with wind. 

3.2.2 Beamform spectra 
Spectral plots are shown in Figs. 8-13. Each plot shows the microphone 1 spectrum for the 

speaker alone and for the speaker and wind, along with a beamforming spectrum for each of 
those conditions. The six figures represent the six combinations of CSM treatment and 
beamforming algorithm. The beamforming spectra show the peak beamforming level in a 
small region of interest centered on the speaker location. The beamforming spectra are 
intended to show the level at the array due to the speaker source. Ideally, they should match 
the spectrum for microphone 1 for no wind, since the speaker source strength should be the 
same for the two datasets.  

The FDBF curve using the raw CSM with no wind (Fig. 8) matches the no-wind spectrum 
for microphone 1 very well, as expected. The corresponding FDBF curve with wind (also in 
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Fig. 8) tracks 6-12 dB below the curve for microphone 1 with wind; the speaker appears not 
to be seen.  

Looking ahead to Figs. 9-13, all of the methods show good agreement between 
microphone 1 with no wind and beamforming with no wind. The results that change 
according the methods are the spectra with the speaker and wind.  

In Fig. 9, FDBF with diagonal deletion and wind falls almost consistently below the 
reference curve by about 3 dB. Exceptions occur at 1250 Hz and 3 kHz. Both of these are 
frequencies where the SNR is particularly low (Fig. 4). The spectrum for FDBF with wind 
and diagonal optimization tracks the expected curve without the bias of the diagonal deletion 
case, but, again, misses at low frequency and around 3 kHz. 

The Functional Beamforming curve for wind and the raw CSM appears to follow below 
the microphone spectrum with noise, like the FDBF case, for the lower half of the frequency 
range, but is farther below it, perhaps 15 dB. In the upper half of the frequency range, the FB 
curve is closer to the no-wind microphone 1 curve than the microphone spectrum with wind. 

 Figure 12 shows that diagonal deletion in the case with wind causes the levels of the FB 
maps to be very unreliable. This result is the opposite of the spatial appearance if the 
beamform maps, which appear to be improved with diagonal deletion. It is possible that FB 
could be adjusted to avoid this failure. 

Diagonal optimization improves the FB results from the worst case (Fig. 12) to the best 
(Fig. 13.) 

The RMS differences between the beamforming spectra and the no-wind microphone 1 
spectra  are compared in Fig. 14. For all of the no-wind beamforming cases, the RMS error is 
close to 1.7 dB. With wind, diagonal optimization is the best CSM treatment for both FDBF 
and FB. Comparing beamforming methods, FB is the better one for the raw CSM and 
diagonal optimization. FDBF is better for diagonal deletion.  
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Fig. 1. Test setup. The phased array attempts to measure a broadband speaker source while a jet of 
air from the nozzle on the left impinges obliquely on the array face. 

 
Fig. 2. Microphone spectra for the speaker alone. The heavy curve is microphone 1, which is used as 
the reference for beamforming comparisons. 
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Fig. 3. Microphone spectra for the speaker and wind.  

 
Fig. 4. Relative microphone self noise: the difference between the levels with wind and the speaker 
and the speaker alone. 
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Fig. 5a. Beamforming plots for FDBF, 2 kHz, Left column: speaker alone. Right column: speaker and 
wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: diagonal optimization 
CSM. 
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Fig. 5b. Beamforming plots for Functional Beamforming, 2 kHz, Left column: speaker alone. Right 
column: speaker and wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: 
diagonal optimization CSM. 
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Fig. 6a. Beamforming plots for FDBF, 4 kHz, Left column: speaker alone. Right column: speaker and 
wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: diagonal optimization 
CSM. 

 



6th Berlin Beamforming Conference 2016    Dougherty 

 
 

13 
 

 
Fig. 6b. Beamforming plots for Functional Beamforming, 4 kHz, Left column: speaker alone. Right 
column: speaker and wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: 
diagonal optimization CSM. 
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Fig. 7a. Beamforming plots for FDBF, 8 kHz, Left column: speaker alone. Right column: speaker and 
wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: diagonal optimization 
CSM. 
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Fig. 7b. Beamforming plots for Functional Beamforming, 8 kHz, Left column: speaker alone. Right 
column: speaker and wind. Top row: raw CSM. Middle row: diagonal deletion CSM. Bottom row: 
diagonal optimization CSM. 
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Fig. 8. Spectra from microphone 1 and beamforming with and without wind. FDBF with the raw CSM. 

 
Fig. 9. Spectra from microphone 1 and beamforming with and without wind. FDBF with diagonal 
deletion CSM. 
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Fig. 10. Spectra from microphone 1 and beamforming with and without wind. FDBF with optimized 
CSM. 

 
Fig. 11. Spectra from microphone 1 and beamforming with and without wind. Functional 
Beamforming with the raw CSM. 
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Fig. 12. Spectra from microphone 1 and beamforming with and without wind. Functional 
Beamforming with diagonal deletion CSM. 

 
Fig. 13. Spectra from microphone 1 and beamforming with and without wind. Functional 
Beamforming with optimized CSM. 
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Fig. 14. RMS difference between beamforming spectra and the spectrum from microphone 1 with no 
wind. Left side: beamforming with no wind data. Right side: beamforming with speaker and wind. 

4 CONCLUSIONS 
A new CSM diagonal optimization algorithm has been presented. It offers much of the 

self-noise interference reduction of diagonal deletion while avoiding the potentially severe 
problems of negative CSM eigenvalues. It does not assume that either the acoustic 
microphone levels or self noise levels are uniform, and does not rely on knowledge of the 
array steering vectors. It is feasible and has been shown to be effective for a case of a simple 
source with a very high level of self noise contamination. Its formulation suggests that it 
works best when the number of acoustic sources is small compared with the number of 
microphones.  

In the example test, it was found that CSM diagonal deletion applied to a case with high 
self noise increased the dynamic range and sharpened the peaks, but introduced errors in the 
peak level. The errors can were very large in the case of Functional Beamforming. Diagonal 
optimization significantly improved the accuracy of the levels of the beamforming peaks. 
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