
TIME-DOMAIN BEAMFORMING ON MOVING
OBJECTS WITH KNOWN TRAJECTORIES

Gero Zechel1, Andreas Zeibig2, Michael Beitelschmidt1
1TU Dresden, Institut für Bahnfahrzeuge und Bahntechnik

Hettnerstraße 1-3, 01062 Dresden, Germany, gero.zechel@tu-dresden.de
2Schirmer GmbH Beratende Ingenieure

ABSTRACT

The application of beamforming algorithms to locate sound sources on fast-moving ob-
jects like trains or cars can be troublesome. Typically, very short signal frames have to
be used to achieve an “acoustic still image” for the pinpointing of sound sources on the
observed moving object.

On the other hand, if the trajectory of the object is given or can be gathered by additional
measurements, it can be used to computationally eliminate the object movement allowing
large signal frames, to correct sound pressure levels assuming spherical wave propagation,
and to remove frequency shifts caused by the Doppler effect. To achieve this, a simple
time-domain beamforming algorithm has been developed that basically reconstructs and
evaluates the source signals of hypothetical point monopoles on the objects surface.

The algorithm itself and ways to optimize it to reduce memory usage and CPU time
when processing measurements of very large objects are shown in detail. Results of mea-
surements on trains that underline its capabilities are demonstrated.

1 INTRODUCTION

The visualization of sound sources on arbitrary objects can be of great utility to locate, compare
and demonstrate the causes of noise. To do so, an object can be modeled by placing a grid
of hypothetical point monopoles on its surface. Focusing each of these sources by running
a beamforming algorithm on measurements done with a microphone array, the influence of a
source to the overall noise can be determined. As some objects primarily emit noise when in
motion, beamforming on moving objects is necessary. While not trying to locate the object itself
– this can be done by more traditional techniques – we focus on locating the sources relative to
the object by adapting a classic time-domain beamforming method.

1

Michel
Textfeld
BeBeC-2010-12

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

2 BEAMFORMING ON STATIC VS. MOVING OBJECTS

Our approach is based on delay-and-sum beamforming assuming point monopoles and spherical
wave propagation as described in [1], where the beamformers output signal p(t) is gained by

p(t) =
1
M

M

∑
m=1

wm · pm(t +∆m), (1)

i.e. summing M microphone signals pm(t) after each of them is delayed by the time ∆m and
weighted by the factor wm. The delay times, that cause signals from a focused source n to add
constructively, are usually calculated with

∆m = ∆tnm −∆tn0, (2)

where ∆tnm is the sound propagation time between source and microphone and ∆tn0 is a refer-
ence time between the source and e.g. the array center. Because ∆tn0 is equal for all microphone
signals it only changes the absolute time frame of the output signal. This is irrelevant for most
evaluations that can be run on the output signal, so this offset can be neglected. Doing so has
the side effect that the output signal no longer describes the sound immison at the observer, but
the signal emitted at the center of the point monopole, hence we later call it the source signal.

The weighting factors, that assure that all microphones have the same impact on the result no
matter how far away they are from the source, are usually calculated with

wm =
rnm

rn0
(3)

following the inverse-distance law. The reference distance rn0, again from the source to an
observer at the array center, causes two point monopoles with the same intensity to be rated
differently depending on their position on the objects surface. This can be counterproductive
for the evaluation of many everyday objects, because in most cases they affect more than one
observer at different locations. This is why we are using a more source-oriented reference
distance r0 (of e.g. 1 meter), that is equal for all sources, leading to a better comparability while
still describing a sound pressure relevant for the nuisance. This finally leads to eq. (4).

pn(t) =
1
M

M

∑
m=1

rnm

r0
· pm(t +∆tnm) (4)

It implies that we are able to get the full time-domain source signal out of M time-domain
microphone signals and M scalars rnm. However, when a moving source is measured with a
fixed microphone over a period of time, the distance between source and microphone is no
longer constant, but a function of time. Figure 1 shows the consequences this has on phase
and amplitude of the recorded signal by taking two events that take place at an approaching
source at the times t1 and t2 and observe how they propagate through the fixed medium to the
microphone. Because the sound emitted at t2 needs less time to reach the microphone than the
signal emitted at t1, the waveform between these events is compressed resulting in a increase of
frequency known as the Doppler effect. Likewise, because the distance decreases, the amplitude

2

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

nm11t +t t +t2 nm2

t1 t2v

rnm1

rnm2
p

t

p

t

source n

microphone m

microphone m

source n

t1 t2

Figure 1: Derivation of the Doppler effect

increases over time.
As now both the time delay and the weighting factor are functions of time, they could either

be described and used both to distort the microphone signals allowing them to be summed
up to the source signal, or it could be analyzed what the source signal then would consist of
and calculated directly. Taking into account time-discrete signals with finite samples, the latter
approach is quite feasible. Figure 2 shows how the time-discrete source signal pn can be put
together element-wise by picking the right samples pm,t from the microphone signals. Now
describing the time as a number of sample time steps, t is used as the signal vector’s index and
∆t is now merely an offset of time steps. Based on eq. (4), what’s shown in fig. 2 can also be
described by

pn,t =
1
M

M

∑
m=1

wn,m,t · pm,t+∆tnm,t (5)

with the weighting factor

wn,m,t =
rnm,t

r0
(6)

and the offset due to the sound propagation

∆tnm,t =
rnm,t

c∗
(7)

where rnm,t is the distance between source n and microphone m at time step t (when the sound
is emitted), r0 is the reference distance to normalize the sound pressure (e.g. 1 m) and c∗ is the
speed of sound converted to the unit meter per time step.

3

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

p
n,t

p
n,1

p
1,1

p
2,1

p
m,1

p
n2,t2,t+∆ t

∆ t
p
m,t+ nm,t

p
1,t+ n1,t∆ t

n1,t∆ t

microphone 2

microphone m

Σ

microphone 1

time step321 t t+1

source n

Figure 2: Reconstruction of the source signal (not showing the weighting factor)

3 DEVELOPING THE ALGORITHM

Let’s first discuss the main program that calls the actual core-algorithm. It can be divided into
the following 8 steps:

1. Preprocess the microphone signals
2. Spread a grid of point monopoles on the objects surface and calculate their locations
3. Set up the object’s motion vector
4. Generate an empty result matrix

• Repeat for all sources:
5. Execute the beamforming algorithm
6. Run a DFT on time-domain result signals

7. Convert the RMS sound pressures in sound pressure levels
8. Plot the result matrix

In the first step, the microphone signals are read in and assigned to the microphone positions
in an absolute coordinate system. In step 2, the objects surface is modeled with a grid of point
monopoles. The location of these sources is calculated in an coordinate system relative to the
object. The relation between the absolute coordinate system and the object coordinate system is
defined in step 3, when the motion vector of the object and its location and orientation at t0 = 0
are calculated. In step 4, an empty result matrix is generated, that can hold the RMS sound
pressures of each regarded octave for each of the sources – it is converted to sound pressure
levels and plotted later in step 7 and 8. The core functionality falls into step 5, where the source
signal is gained with a time-domain beamforming algorithm, that can be evaluated and reduced
in size by running a discrete Fourier transformation in step 6.

4

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

This time-domain beamforming algorithm, run for each source separately, needs several in-
put values, namely the position of the source at t0, its motion vector, the locations of all micro-
phones, their full recordings, and the steering range of the array – the zone where the source
can be adequately focused. The output vector is the time-domain source signal calculated by
processing the following simple steps:

1. Calculate the time span tentry,n .. texit,n in which the point source n is focusable

� Repeat for each time-step t of this time span:
2. Calculate the current location of the source
3. Initialize the current sound pressure pn,t with zero
� Repeat for each microphone m = 1 .. M:

4. Fetch the static location of this microphone
5. Calculate the distance rnm between source and microphone
6. Calculate the weighting factor wn,m,t (eq. 6)
7. Calculate the sound propagation time as a integer of time steps ∆tnm,t (eq. 7)
8. Read the microphone signal at t +∆tnm,t

9. Multiply this sound pressure with wn,m,t and add it to pn,t

10. Divide the resulting sound pressure pn,t by the number of microphones

11. Output the time-domain source signal pn

Additionally, steps 7 and 8 can be easily extended to perform a linear interpolation of the
microphone signals by calculating ∆tnm,t as a decimal and using the post decimal positions to
weight the two adjacent microphone samples.

4 OPTIMIZATION OF MEMORY USAGE AND CPU TIME

The loop-based approach of the algorithm has impacts on memory usage and CPU time. Both
should be analyzed and optimized to improve the algorithm’s applicability.

On the one hand, the algorithm has a very low memory footprint: Besides the full measure-
ment data, that can easily grow to 500 MB, and the result matrices, that fill up to 50 MB, there is
nearly no memory needed at all: Less than a megabyte is used to store the intermediate result –
a single time-domain source-signal. This makes it feasible to run the algorithm even on low-end
hardware.

On the other hand, in can be difficult to keep CPU time reasonably low. Because optimization
of preprocessing (about 5 seconds), plotting the results (about 10 seconds), and the fast Fourier
transformation performed on each time-domain source signal (about 0.5 ms per source or 100 s
for 200,000 sources) didn’t seem promising, we focused on speeding up the beamforming algo-
rithm itself.

The first step to achieve this was choosing a programming language that performs well with
nested loops. After porting the core algorithm from a Matlab m-function to a Matlab mex-
function written in C, we experienced a speed-up of factor five, down to 6 ms per source on a
desktop computer, which is the base for our optimization efforts.

5

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

When, for example, 200,000 sources are traced over 0.15 seconds with 32 microphones, the
inner loop of the algorithm runs 48 billion times overall or 240,000 times per source, making it
crucial that this part of code is executed as fast as possible. The most CPU intensive operation
of this loop is by far the calculation of the microphone to source distance using the square
root function. However, the square root can also be calculated iteratively with the Babylonian
method, which is most effective when the result can be approximated a priori. Because the
change in distance between two time-steps is very small, the method can be used with a single
iteration for all but the first time-step. This roughly doubles the speed of the core-algorithm,
leading to 3 ms per source on a desktop computer.

Further optimization is possible when the sources are on a two-dimensional surface and the
motion vector is constant and coincides with one of these dimensions. When a surface with
s x s sources passes the array, there are only s different trajectories, so the vast majority of s2-s
sources pass the array on already beaten paths. The calculations on the first source travelling
on an unique trajectory can be cached with 3 values for each time-step and each microphone:
The time delay ∆tm,t and two new weighting factors am,t and bm,t , which take into account the
interpolation ratio of two adjacent microphone samples, the multiplication with rnm,t , and the
division by the number of microphones M.

For every source that passes the array on the same trajectory, but entering the steering range
of the array at a different time tentry, the source signal p can now be determined with

ptentry+t =
M

∑
m=1

am,t · pm,(tentry+t+∆tm,t)+bm,t · pm,(tentry+t+∆tm,t+1) (8)

using given and precalculated values only. On object planes with a high width to height ratio
like trains, this can speed up the calculation by factor 3 – down to 1 ms per source on a desktop
computer.

5 APPLICATION

After testing the algorithm with simulations and with artificial sources, several trains have been
measured and evaluated [2], the fastest one being an EuroCity train travelling at 122 km/h. For
this, a two-dimensional double circular array with 32 microphones and an outer diameter of
ra = 0,65m was reused, that, regarding its size, microphone alignment, missing microphone
windscreens, and poor fastening of the array itself, has not been specially optimized for this
task. The data acquisition was carried out with a National Instruments PXI system at a sample
rate of 50 kHz, the trains’ speeds were determined with a radar gun MuniQuip KGP.

An object size of 270 m x 4.4 m and a source grid size of 4 cm lead to 749,361 hypothetical
point monopoles. Each of this sources is traced separately over a distance of 4 m or a time
span of 0.12 seconds (5,901 time steps). Using the algorithm and linear interpolation described
in section 3 as well as the optimization techniques described in section 4 it took 17 minutes
to generate the plots of Figure 3, that shows the sound pressure levels of each source in four
regarded octaves foct = 500 .. 4000 Hz.

Reaching a dynamic range of more than 20 dB over the object’s surface, it clearly depicts
the low pitch propulsion noise in the center of the electric locomotive, a wideband source at the
leading wheelset, and the dominance of the wheel-to-rail contact as a source of noise throughout

6

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

Figure 3: Evaluation of a 9-car EuroCity train travelling at 122 km/h

7

3rd Berlin Beamforming Conference Zechel, Zeibig and Beitelschmidt

the train. The 3rd car – a dining car – shows less emissions on its front bogie than others, which
might be explained by the higher load of the kitchen above it improving its dynamic behavior.

The circularly arranged side lobes of the array pattern (which are shown for the same ar-
ray, but for closer sources, in [3]) are clearly noticeable in the two highest octaves. In the
1000 Hz band cars 7 and 8 – the only passenger cars travelling backwards – show an additional
source in front of the back bogie. This indicates that the non wheelset sources in this band are
not side-lobes of the wheelset sources but e.g. fan noise.

6 CONCLUSIONS

A lightweight algorithm for time-domain beamforming on moving objects has been developed.
Being optimized for speed, it scales well when applied on large objects like trains. It is straight-
forward to implement and can be used as a robust base for further research, that should include
smarter evaluation of the time-domain output signals to enhance source separation and side-lobe
suppression.

REFERENCES

[1] D. H. Johnson and D. E. Dudgeon. Array Signal Processing: Concepts and Techniques.
PTR Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[2] G. Zechel, A. Zeibig, and M. Beitelschmidt. Beamforming an bewegten Objekten im Zeit-
bereich. In Fortschritte der Akustik - DAGA 2008. Deutsche Gesellschaft für Akustik e.V.,
Berlin, 2008. ISBN 978-3-9808659-4-4.

[3] A. Zeibig, C. Schulze, E. Sarradj, and M. Beitelschmidt. Microphone array measurements
on aeroacoustic sources. GFaI, Gesellschaft zu Förderung angewandter Informatik e.V.,
Berlin, 2006. Proceedings of the 1st Berlin Beamforming Conference, 22-23 November,
2006.

8

	1 INTRODUCTION
	2 BEAMFORMING ON STATIC VS. MOVING OBJECTS
	3 DEVELOPING THE ALGORITHM
	4 OPTIMIZATION OF MEMORY USAGE AND CPU TIME
	5 APPLICATION
	6 CONCLUSIONS

