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ABSTRACT 
The paper presents a new method for the improvement of microphone array measurement 

results using an unconventional, relatively simple and very fast iterative post processing 
algorithm suitable for 2D-beamforming acoustic maps. This procedure is based on the 
mathematical model of a time reversed diffusion process which is numerically stabilized by 
means of a spatial low pass filter as well as by an additional amplitude renormalization step.  

The method allows the reduction of the mainlobe width of acoustic point sources in the 
map and can thus be applied for the improvement of the usually very bad image contrast in 
the lower frequency range and also for a better separation of closely lying sources which can 
not be clearly resolved by simple delay-and-sum beamforming. An outstanding property of 
the proposed algorithm is that it does not rely on the knowledge of the point spread function 
which is needed in complete deconvolution approaches.  

The iteration procedure merely utilizes the local curvature information that is already 
hidden within the acoustic beamforming map to sharpen the individual sources while 
simultaneously smoothing out disturbing high frequency components that otherwise would 
lead to numerical instability and unlimited amplification of unwanted small false signal and 
noise components.  
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1 INTRODUCTION  
The use of microphone arrays (acoustic camera) for the fast localization and visualization 

of noise sources of machines and equipment of any kind has gained much popularity in real 
world industrial applications and in acoustic research. The underlying common principle in 
the farfield approach is the well known delay-and-sum beamforming method [1].  

The visual interpretation of the resulting acoustic maps can be quite difficult and it requires 
lots of practical measurement experience and theoretical knowledge in acoustics and array 
processing. During the last years, many attempts have been made to generally improve beam-
forming results, to raise array and image contrast, to increase resolution and to undo the 
unwanted effects of the spatial convolution between sources and array patterns. Some of these 
methods originally stem from signal processing or optics, others have been developed as 
dedicated complete deconvolution approaches for phased array results, especially within the 
aeroacoustics and airplane research community.  

In this paper, we present a new, fast inverse method developed at GFaI to improve the 
source separation capabilities and image contrast by mere postprocessing of the acoustic 2D-
images. While this method can not replace the true deconvolution approaches, it may provide 
an attractive alternative when computing time and memory ressources are of serious concern 
or when the specific array pattern is not known. The procedure iteratively increases the local 
curvature of source peaks within the acoustic photo and it does neither need the original 
channel data nor the array dependent point spread function.  

The paper is organized as follows. In the next section, a short overview of some existing 
methods for the improvement of source separation is given. In part 3, the basic ideas and the 
theoretical background of the new postprocessing scheme are explained. Section 4 presents 
some simulation results to demonstrate the basic behaviour of the proposed iteration scheme, 
and section 5 gives an application to a real world example. A short summary and an outlook 
to further research and to possible future applications in part 6 will close the paper.  

 

2 METHODS FOR SOURCE SEPARATION  

2.1 General properties of beamforming results  
With beamforming, a microphone array (phased array) will be successively focused to the 

individual points on a measurement plane or on an object’s surface by compensating for the 
relative runtime delays between the microphone channels and adding up the shifted time 
signals coherently. Normalization by the channel number then allows the determination of the 
effective sound pressure level at every focus point. This way, a complete mapping of the 
sound pressure distribution in the measurement plane or on the entire 3D-surface of a distant 
object can be calculated. This basic method can be computed directly in the time domain or in 
the frequency domain as well.  

Unfortunately, the resulting image (beamforming map, acoustic photo) even of an ideal 
point source is never a single point, instead this point source appears smeared over a certain 
region of the image, showing a frequency dependent specific pattern of a broadened mainlobe 
and several sidelobes.  
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This happens because beamforming maps are always the result of a spatial convolution 
between the source signal’s spatial spectrum and the so called point spread function (psf), 
which depends on frequency, array size and geometry (sensor count and positions), and on the 
focus point itself. In practice, the resulting source patterns are even spatially periodic due to 
the discrete sensor distribution in the array. Depending on the size of the image field and the 
signal frequencies, certain unwanted effects are the result. For signal frequencies too high, the 
spatial replica of the mainlobe will become visible in the image field, thus causing high 
frequency aliasing. For the lowest frequencies, on the other hand, the mainlobe will consume 
a huge part of the image, thus leading to generally very bad image contrasts for limited array 
sizes. Generally, the mainlobe width of a standard delay and sum beamformer is proportional 
to the wavelength and to the focus distance and inversely proportional to the array aperture.  

2.2 Improvements - Overview of existing approaches  
To overcome the limitations of standard beamforming, several approaches exist. Nearly all 

of them work in the frequency domain. Basically, there are two main groups of methods. The 
first group trys to separate between sources without taking array patterns into account. To this 
group belongs e.g. the quite powerful orthogonal beamforming [2], that is based on an 
eigendecomposition of the complex cross spectral matrix. Eigensystem based methods are 
also described in the classic array literature [3] for signal classification purposes etc.  

The second group of methods instead trys to separate the individual sources from the 
influences caused by the specific array pattern. These are inherently deconvolution methods. 
One well known approach, CLEAN, attempts first to remove the sidelobe pattern of the 
strongest point source in the acoustic image, thus allowing weaker sources to become visible. 
This procedure can be used iteratively and has recently been extended to take spatial source 
coherences into account [4]. While the CLEAN-method could be seen as a pointwise or 
partial deconvolution approach, the actual state-of-the-art is a complete deconvolution.  

Here the goal is to remove the array influence for all sources and all signal frequencies and 
for all focus points simultaneously. As these are inverse methods, all of them need a form of 
numerical regularization. Most famous here are DAMAS [5] and various following 
developments [6], the newer of them also including source coherences [7]. These modern 
methods allow for a better quantitative analysis and are very powerful, but they are also still 
very ressource demanding.  

2.3 Demands for a more practicable method  
For practical use within the Acoustic Camera, we have the need for a method that also 

allows for a better separation of sources, especially in the lower frequency range. At the same 
time, this approach should be much less demanding, especially concerning computing time 
and memory ressources, than the above mentioned methods. Because our system is mainly 
used as a fast troubleshooting technique, we do not need exact quantitative results in any case. 

On the other hand, we need a procedure that is well suited for broadband signals (avoids 
spectral domain computations), that can postprocess existing acoustic photos (perhaps 
without the channel data) and that avoids, if possible, the need of simulating the array psf. 
Additionally, it should be possible to extend the results to the more general 3D-case.  
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3 NEW METHOD 

3.1 Basic Ideas  
The above mentioned needs are of course not easy to meet. It is clear that a complete 

deconvolution approach is out of question under these conditions. A partial deconvolution 
without knowledge of the psf is also difficult to imagine. But we can ask to ourselves the 
following more basic question: Is it possible to undo some of the destructive effects of 
convolution when we only know that our acoustic images are the result of a spatial 
convolution process, but we do not know exactly how this convolution was performed?  

Surprisingly enough, the answer to this question is positive, at least partially. In the 
broadband case that we generally consider here, most of the sidelobes will average out for 
nonmoving sources, so we will only concentrate on the broadening of the mainlobes in the 
following. This broadening and smearing of the mainlobes in space has some loose similarity 
with a physical diffusion or heat conduction process [8]. An initially concentrated parameter 
will be continually distributed in space under the dynamics of the system. The behaviour of 
the mathematical model of such a process is also nonlocal, exactly as it is with the 
convolution kernels of the array psfs. After a certain time, every point in the resulting (image) 
field will contain information from all the formerly concentrated source points. Sources will 
merge and can not be well separated anymore.  

While both processes (diffusion and convolution) are not exactly the same, they share this 
important common property of nonlocality. So, what happens now when we simply reverse 
the time parameter t in the more general diffusion model equation? Can we achieve a virtual 
“deconvolution” this way?  

3.2 Background and Algorithmic implementation  
The mathematical model used in physics for the description of a diffusion (or also a heat 

conduction) process is a partial differential equation (PDE) of parabolic type and has the 
general form:  
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Here, the onedimensional form in space is used just for convenience of the following 
explanations. The parameter U denotes the physical quantity of interest and will be the image 
function in our case. The coefficient D(⋅) > 0 is a positive definite function of its arguments. 
In the linear case D = const > 0, it can be easily shown by a Fourier transform to the wave 
number domain that this system dynamics always acts as a spatial low pass filter. The product 
D ⋅ ∂2U/∂x2 in (1) is the analogon to a convolution kernel of an array psf.  

Inverting the direction of time now will have two effects. First, the system is no more of 
the parabolic type any longer. Second, it will now act as a nonlinear amplifier for the higher 
frequency energy components. While the second property is exactly what we must utilize to 
exploit the hidden information about the fine structure in the acoustic maps, this is also very 
risky.  
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The time reversed PDE can be discretized with a finite difference scheme and gives the 
following simple iteration procedure:  
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Here, the parameter γ  > 0 allows to determine the amount of high frequency amplification 

introduced into the system. For a (hidden) local maximum point in the image, the local 
curvature will be equivalent to the second derivative, which is negative then. Since γ  must be 
positive, no matter how small we might choose this amplification constant the system will 
always be numerically instable, so the direct implementation of (2) is not possible. HF-energy 
simply will grow to infinity during the iteration cycles, thereby destroying the information 
content in the lower frequency regions also. Therefore, as it is the case with all inverse 
methods [9], also this system needs an external regularization. We introduced two different 
mechanisms for stabilization.  

First, an additional low pass filter in the spatial domain is added after each iteration step of 
Eq. (2) to eliminate the unwanted high frequency components that otherwise would amplify 
the noise and small but uninteresting false signal components without limits. This filter step is 
described by  
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 In (3), the smoohting kernel F is a symmetric function with finite support, and it may also 

depend on the number n of iteration steps. With this additional filtering, the iteration process 
now acts as a tunable bandpass type filter in the spatial domain. Nonlinear HF-amplification 
in the filter’s passband is allowed, but disturbing higher frequency components are sup-
pressed. The width of this filter must be choosen according to the mainlobe width of the 
seeked hidden peaks in the acoustic map. While the use of (3) actually stabilizes the algorithm 
now, it is important to apply the filter step always after the HF-amplification step (2), in order 
to allow the system to first nonlinearly amplify the hidden curvature information in the map.  

The second mechanism of regularization is needed because the nonlinear behaviour of the 
local curvature amplification also urgently demands the stabilization of the system’s 
magnitude response. The iterations show maximum efficiency when the image functions and 
the local curvature values would have the same order of magnitude. For amplitude 
stabilization a renormalization to unity was introduced into (2), now having the form:  
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In this modified form of the amplification step, the parameter σ(n) is an (unknown) average 

width of the image function. This renormalization step can only guarantee that the peak 
maximum level will be stable, but the metrics in the rest of the image can not be conserved. 
So, the method is only a qualitative one. Generalization of (4) and (3) to the 2D-case is 
relatively straightforward and will therefore not be shown in this paper.  
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4 SIMULATION RESULTS  
In Fig. 1, the resulting image function of two closely lying peaks is shown in the 1D-case. 

While the image function itself has just one local maximum (the two real sources are 
“merged” together), the analysis of the first (red curve) and second derivative (blue curve) 
clearly shows the hidden peak maxima. This situation could well stem from a cross section 
through an acoustic 2D-photo. Increasing the local curvature allows separation of the two 
peaks, which works perfectly in the undistorted case.  

 
Fig. 1. Simulation of two hidden peaks in the 1D-case. The higher moments allow for separation.  

The more realistic case of a noisy image function is shown in Fig. 2 a and b. Note the high 
amount of noise especially in the second derivative (blue curve). Fig. 2b shows the result of 
the local curvature enhancement by applying Eq. (4) and (3) for just 6 iteration steps. The HF-
disturbances outside strongly curved regions are very effectively filtered out. The first and 
second derivative now clearly show the two peaks again, which are now also visible in the 
reconstructed image function. Since both peaks had the same strength initially, the noise only 
introduced a slight asymmetry into the end result here. In this case, the amplitude 
renormalization scheme proved to be effective. During the simulations, the method began to 
fail for noise levels greater than approximately 4% to 5% of the maximum amplitude.  

 

  
Fig. 2a. Same function as in Fig. 1 but with 2% 
noise added to the image function.  

Fig. 2b. Result after 6 iterations of the separation 
method. Local curvature has been increased. 
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5 APPLICATION EXAMPLE   
The method was applied to real acoustic maps of the low frequency emissions of a car 

door. The array used was our new standard symmetric ring array with 48 channels at 2m 
measurement distance. The sampling rate was 192 kHz. A white noise source was active 
inside the car. While the original task to detect high frequency leakages at the door sealings 
around 5 kHz to 6 kHz is no problem for the Acoustic Camera, the lowpass filtered signals 
below 1200 Hz yielded very bad image contrasts and did not allow for source separation (Fig. 
3a. and 4a.). In Fig. 3a., the user could surmize that there is more than one source due to the 
slight asymmetry of the emission, but there is only one visible local maximum.  

 The new postprocessing method was convergent after only 2 iterations, because this map 
is much smoother than the example above. Manual tuning of the spatial low pass filter and 
amplification parameters was still necessary. The results clearly show the application 
potential of the proposed method. The right emission was an actual lower frequency door 
leakage, while the left emissions in Fig. 3b. and 4b. show the true speaker position within the 
door.  

 

  
Fig. 3a. LF emissions from 0 to 1200 Hz at a car 
door. Image contrast is 5dB.  

Fig. 3b. Result after 2 iterations, contrast 5dB.  

 

  
Fig. 4a. LF emissions from 0 to 1200 Hz at a car 
door. Image contrast is 12dB. 

Fig. 4b. Result after 2 iterations, contrast 12dB. 
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6 SUMMARY 
The paper presented a new and promising method for the improvement of image contrast 

and a better source separation in acoustic images. It is a mere postprocessing method and it 
does not rely on the knowledge of array point spread functions. The procedure has low 
computational and memory ressource demands and is very well suited for broadband signals. 
For typical acoustic maps, the algorithm usually converges within only two or three iteration 
steps.  

As with any method with limited a priori information, it clearly has its drawbacks. It can 
not replace the more advanced full deconvolution methods, and it can fail when noise level is 
too high, sources are too close or when there are many sidelobes in the map. In the future, we 
will optimize the spatial low pass filter, perform much more simulations and practical 
applications, integrate the method into the NoiseImage software and try a generalization to 
the 3D-case. In addition, inclusion of the array psf for simple geometries (ring) can be an 
option.  
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