

CLEAN Based on Spatial Source Coherence

Pieter Sijtsma

Nationaal Lucht- en Ruimtevaartlaboratorium – National Aerospace Laboratory NLR

Acoustic array measurements in closed wind tunnel test section

Airbus A340 model in DNW-LLF 8x6 m² closed test section (AWIATOR)

wall mounted array

CLEAN-CLASSIC (1)

Array simulations

NLR - Dedicated to innovation in aerospace

CLEAN-CLASSIC (2)

Conventional Beamforming

"Point Spread Function"

CLEAN-CLASSIC (3)

Secondary sources added

CLEAN-CLASSIC (4)

Successively remove Point Spread Functions

A340 scale model (1)

- DNW-LLF 8x6 m² closed test section
- Scale = 1:10.6
- Flush mounted floor array
- 128 microphones

A340 scale model (2)

dominant slat noise source at 12360 Hz

-13

source plot at 31 dB range

A340 scale model (3)

NLR

Similarity with Point Spread Function

-3

-7

-11

-15

-19

-23

-27

-31

Point Spread Function

A340 scale model (4)

Application of CLEAN – first step

disappointing!

A340 scale model (5)

● Beam pattern of dominant source ≠ Point Spread Function

• Possible reasons:

- source is not a point source
- source does not have uniform directivity
- error in height of source plane
- error in flow Mach number
- flow is not uniform
- errors in microphone sensitivity
- loss of coherence

Motivation for CLEAN based on spatial source coherence (CLEAN-SC)

Spatial source coherence (1)

Conventional definition of coherence

Consider microphone signals p_n (frequency domain)

Auto-powers: $C_{nn} = \left\langle \left| p_n \right|^2 \right\rangle$ Cross-powers: $C_{mn} = \left\langle p_m p_n^* \right\rangle$ Coherence: $\gamma_{mn}^2 = \frac{\left| C_{mn} \right|^2}{C_{mm} C_{nn}}$

Suppose p_n and p_m have constant amplitude and fixed phase difference: $\rightarrow \gamma_{mn}^2 = 1$ Otherwise: $0 < \alpha_n^2 < 1$

Otherwise: $0 \le \gamma_{mn}^2 < 1$

Spatial source coherence (2)

Beamforming summary

Source auto-power in scan point $\vec{\xi}_j$: $A_{jj} = \mathbf{w}_j^* \mathbf{C} \mathbf{w}_j$ $\mathbf{C} = \text{matrix of cross-powers (Cross-Spectral Matrix)}$ $\mathbf{w}_j = \text{weight vector associated with } \vec{\xi}_j$

property:
$$A_{jj} = \mathbf{w}_{j}^{*} \mathbf{C} \mathbf{w}_{j} = 1$$
, when $\mathbf{C} = \mathbf{g}_{j} \mathbf{g}_{j}^{*}$.

 \mathbf{g}_i =steering vector

(microphone pressures due to theoretical point source in $\vec{\xi}_i$)

Spatial source coherence (3)

Source coherence

Source auto-power in $\vec{\xi}$: $A_{jj} = \mathbf{w}_{j}^{*}\mathbf{C}\mathbf{w}_{j}$ Source cross-power between $\vec{\xi}_{j}$ and $\vec{\xi}_{k}$: $A_{jk} = \mathbf{w}_{j}^{*}\mathbf{C}\mathbf{w}_{k}$ Source coherence: $\Gamma_{jk}^{2} = \frac{|A_{jk}|^{2}}{A_{jj}A_{kk}} = \frac{|\mathbf{w}_{j}^{*}\mathbf{C}\mathbf{w}_{k}|^{2}}{(\mathbf{w}_{j}^{*}\mathbf{C}\mathbf{w}_{j})(\mathbf{w}_{k}^{*}\mathbf{C}\mathbf{w}_{k})}$

Spatial source coherence (4)

Single coherent source

Constant amplitude and fixed phase difference: $\mathbf{C} = \langle \mathbf{p} \mathbf{p}^* \rangle = \mathbf{p} \mathbf{p}^*$ $\Rightarrow A_{jk} = \mathbf{w}_j^* \mathbf{C} \mathbf{w}_k = \mathbf{w}_j^* \mathbf{p} \mathbf{p}^* \mathbf{w}_k = (\mathbf{w}_j^* \mathbf{p}) (\mathbf{p}^* \mathbf{w}_k)$ $\Gamma_{jk}^2 = \frac{|A_{jk}|^2}{A_{jj}A_{kk}} = \frac{|(\mathbf{w}_j^* \mathbf{p}) (\mathbf{p}^* \mathbf{w}_k)|^2}{(\mathbf{w}_j^* \mathbf{p}) (\mathbf{p}^* \mathbf{w}_j) (\mathbf{w}_k^* \mathbf{p}) (\mathbf{p}^* \mathbf{w}_k)} = 1$

Spatial source coherence (5)

Peaks & side lobes

At peaks and side lobes: array output dominated by single coherent source

$$\Rightarrow A_{jk} \approx \mathbf{w}_{j}^{*} \mathbf{p} \mathbf{p}^{*} \mathbf{w}_{k} = (\mathbf{w}_{j}^{*} \mathbf{p}) (\mathbf{p}^{*} \mathbf{w}_{k}) \text{ and } \Gamma_{jk}^{2} \approx 1$$

Basics of CLEAN-SC (1)

General loop

- 1. Calculate source auto-powers in $\vec{\xi}_j$: $A_{jj} = \mathbf{w}_j^* \mathbf{C} \mathbf{w}_j$
- 2. Determine peak value A_{kk}
- 3. Subtract coherent part: $A_{jj}^{\text{updated}} = A_{jj} \left(1 \Gamma_{jk}^2 \right)$

$$= A_{jj} \left(1 - \frac{\left| A_{jk} \right|^{2}}{A_{jj} A_{kk}} \right) = A_{jj} - \frac{\left| A_{jk} \right|^{2}}{A_{kk}}$$

Basics of CLEAN-SC (2)

Small complication

Main diagonal is usually removed from C

$$A_{jj} = \mathbf{w}_{j}^{*} \mathbf{C} \mathbf{w}_{j} \text{ can be negative}$$

$$\Gamma_{jk}^{2} = \frac{\left|A_{jk}\right|^{2}}{A_{jj}A_{kk}} \text{ can have all sorts of values (not necessarily } 0 \le \Gamma_{jk}^{2} \le 1)$$

$$A_{jj}^{\text{updated}} = A_{jj} \left(1 - \Gamma_{jk}^{2}\right) \text{ unstable}$$

Complication

Main diagonal is usually removed from **C** $A_{jj} = \mathbf{w}_{j}^{*} \mathbf{C} \mathbf{w}_{j}$ can have negative values But $A_{kk} > 0$ (being a maximum value)

$$A_{jj}^{\text{updated}} = A_{jj} - \frac{\left|A_{jk}\right|^2}{A_{kk}} < A_{jj}$$

CLEAN-SC: more general approach

More general approach required

Subtract "coherent" part: $A_{jj}^{\text{updated}} = A_{jj} - \mathbf{w}_{j}^{*} \mathbf{G} \mathbf{w}_{j}$

 $\begin{cases} \mathbf{G} \text{ is responsible for the cross-powers with peak source in } \vec{\xi}_k : \\ \mathbf{w}_j^* \mathbf{C} \mathbf{w}_k = \mathbf{w}_j^* \mathbf{G} \mathbf{w}_k \text{ for all } \vec{\xi}_j \\ \mathbf{G} \text{ is induced by a single coherent "source component" } \mathbf{h} : \\ \mathbf{G} = A_{kk} \left(\mathbf{h} \mathbf{h}^* - \mathbf{H} \right) \\ \left(\mathbf{H} \text{ contains the diagonal elements of } \mathbf{h} \mathbf{h}^* \right) \end{cases}$

CLEAN-SC: analysis

To be solved iteratively, starting with: $\mathbf{h} = \mathbf{g}_k$ (steering vector)

CLEAN-SC: main source removal

coherent cpsppppbntastedtracted

CLEAN-SC: full deconvolution (1)

CLEAN-SC: full deconvolution (2)

$$\mathbf{C} = \sum_{i=1}^{I} A_{\max}^{(i-1)} \mathbf{h}^{(i)} \mathbf{h}^{*(i)} + \mathbf{D}^{(I)}$$

Stop criterion:
$$\left\| \mathbf{D}^{(I+1)} \right\| \ge \left\| \mathbf{D}^{(I)} \right\|$$

For example: $\left\| \mathbf{D} \right\| = \sum_{m,n} \left| D_{m,n} \right|$

CLEAN-SC: full deconvolution (3)

Conventional Beamforming

CLEAN-SC

Example (1)

Typical result at 60 m/s

Conventional Beamforming

NLR - Dedicated to innovation in aerospace

Features of CLEAN-SC

- Determination of absolute source contributions
- Processing speed
- Filtering low frequency wind tunnel noise

Absolute source contributions (1)

breakdown into source components

Absolute source contributions (2)

Absolute source contributions (3)

Differences with Source Power Integration:

- Less grid dependence
 - Grid needs to be such that sources are recognized
 - But no need to have grid points on the exact peaks

• No integration threshold

- Pitfalls:
 - Side lobes of sources outside the grid are also included
 - Coherent reflections are includes as well

Processing speed (1)

Summary of algorithm

Processing speed (2)

- One double summation + many single summations
 ≈ two double summations
- CLEAN-SC about twice as slow as Conventional Beamforming

Filtering low frequency wind tunnel noise

Fokker-100 half model in DNW-LST (3x2.25 m²)

-1.1

-0.6-0.3 0

95

0.3 0.6 0.9

-1.1

-0.6 -0.3

0

88

85

-1.1

-0.6-0.3 0 0.3 0.6 0.9

92

0.3 0.6 0.9

Note

- CLEAN-SC extracts coherent sources from the CSM
- When decorrelation occurs: CLEAN-SC will perform less well
 - Outdoor measurements at large distances from the source
 - Open jet wind tunnel measurements (out-of-flow array)

Conclusions

• New deconvolution method: CLEAN-SC

- No Point Spread Functions used
- Works with removed CSM diagonal
- Counteracts negative side lobes

• Effective tool for removing dominant sources

• also when they are from outside the grid

• Absolute source powers can be obtained

- Good agreement with Source Power Integration
- No threshold, and not much grid dependence
- Few pitfalls

Relatively short processing time

Reference

International Journal of Aeroacoustics:

"CLEAN based on spatial source coherence"

volume 6, number 4, 2007, pages 357 – 374