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Abstract

The sensors that autonomous robots and vehicles use to perceive their environment are
mostly based on optical techniques such as laser, 3D cameras or similar alternatives. The
downside of these sensors is that they fail to operate in obstructed environments that are oc-
cluded by mist, dust or small clutter. Ultrasonic sensors overcome this issue by using sound,
allowing for long-wavelength sensing which passes through the medium’s distortions. The
downside of the current ultrasonic sensors is that the angular resolution is worse than that
of their optical alternatives. Therefore this paper will explore ways to improve the angular
resolution of in-air ultrasonic sensors using the MUltiple SIgnal Classification (MUSIC)
algorithm, as it is showing good results in other fields. A limiting factor of the standard
MUSIC-algorithm in this case is that its accuracy-performance suffers in the proximity of
coherent sources and where not many snapshots of the environment can be taken, which
will happen often when using in-air pulse-echo sensing. In this paper we look at several
techniques to conquer these problems. These techniques include spatial smoothing, com-
pressive sensing and exploiting the toeplitz matrix theory to reconstruct the full rank-matrix
which is necessary to handle coherent sources. There will also be a small explanation on
how to use the MUSIC algorithm with an extremely low number of snapshots, which is
also necessary when using in-air sonar.

1 Introduction

Modern autonomous vehicles use regular cameras, 3D depth cameras and LiDAR sensors
(among others) to construct an image of their surrounding environment. This data can be
further complemented with data from ultrasonic imaging sensors. These individual sonar
sensors require far less computational power [26, 29] and can outperform cameras in harsh
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environments where a lot of occlusion by dust or dirt and/or a lack of light is present [26].
However, there are limitations to the capabilities of this sensing modality. The angular resolu-
tion of these sonar sensors that gather the information can not compete with the accuracy of
alternatives such as LiDAR or a regular camera. Also, sonar sensors are inherently dependent
on the speed of sound which limits their measuring rate to a number much lower than that of
its competitors.

Recently, high-accuracy 3D imaging sonar sensors have been developed and industrially
validated [28]. To keep the computational demands for these systems as low as possible,
these sensors solve the Direction of Arrival (DOA) problem by using the conventional
Bartlett (delay-and-sum) beamforming algorithm in combination with a specifically designed
pseudo-random 32-element array [12, 29]. The resulting sensor provides a reliable source
of 3D perceptual information, but the angular resolution can still be improved knowing that
Bartlett techniques are known for low spatial resolution, especially in comparison with more
recent and advanced DOA estimation techniques providing much higher spatial resolution
[34]. Figure 1 shows an acoustic 2D image (range and azimuth) generated using a linear array
of nine microphones (spacing = 7 mm at 25 kHz) in conjunction with Bartlett beamforming
(panel b) and MUSIC beamforming (panel c) in a simulated environment. This illustrative
example indicates the potential of MUSIC and serves as inspiration for this work. In this paper,
several other methods to better solve the DOA problem will be discussed. The focus will be
on adaptions of the Multiple Signal Classification (MUSIC) algorithm[25], as we believe it
can also achieve great results in the field of in-air sonar despite the presence of a coherent
source-space. The DOA estimation results of the MUSIC algorithm are influenced by six
properties in particular: the number of array elements, the spacing between these elements, the
number of snapshots used, the signal-to-noise ratio (SNR), the angle spacing of the incident
signal, and the coherence of the signal sources. The original MUSIC algorithm does not
perform accurate when multiple coherent signals are present [9, 15, 46]. This is because the
spectral decomposition of the spatial covariance matrix requires a source covariance matrix that
is of full rank [15, 16]. Another issue is the inability to gather the required number of snapshots
that are necessary with MUSIC. Due to the speed of sound being relatively slow (343 m/s), it
is not possible to gather multiple snapshots of the environment in a scenario where the sensor
is used on a moving robot or vehicle. Therefore it is of interest to investigate techniques that
allow for MUSIC to be used with a single snapshot, e.g. [4, 6, 11, 19, 20]. Our take on the
single snapshot approach is to make one snapshot, consisting of a small frequency-bin taken
from multiple microphones over a certain range (time). This is illustrated in Fig. 2. A short
recapitulation of the MUSIC-algorithm will be given later in this paper.

Since sonar relies the reflection of a transmitted pulse, we can assume there will be coherent
signals in the obtained measurements. The aim of this paper is to provide an overview of the
latest adaptations of the MUSIC algorithm that are designed to handle these coherent source-
spaces and that can serve as a method for increasing accuracy with in-air sonar sensors (i.e. work
with a low number of snapshots). A list of a selected number of improvements will be provided,
explaining their method, benefits and limitations. The remainder of this paper is organized as
follows: section II provides a short recapitulation of the MUSIC algorithm followed by a list
of several improvements made to overcome the poor result of the DOA estimation when using
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Figure 1: To indicate the importance of MUSIC beamforming in an in-air sonar scenario, this
paper uses a simulated environment containing 15 sources. The simulation uses a
ULA of nine microphones spaced 5 mm apart and uses an ultrasonic pulse of 25
kHz. This results in a range resolution of 2 mm after a Short-Time Fourier Transform
(STFT) and an angular resolution of 0.5 degrees. Gridlines on the polar-plots are
placed 15 degrees apart in angle and every 50 cm in range. To make the simulation
more realistic Additive White Gaussian Noise (AWGN) was added, resulting in a SNR
of ca. 20 dB. a) A polar-plot showing the location of the 15 simulated sources, spread
randomly across the environment. b) The image we get from the environment when
using conventional Bartlett beamforming. c) shows the same environment but now
processed using MUSIC beamforming with only a single snapshot. Closely spaced
sources in the environment which the conventional beamformer was unable to distin-
guish are found by the MUSIC algorithm. Finding the location of the different sources
is also more accurate when using the MUSIC algorithm.
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Figure 2: Schematic overview of the steps that are executed by the signal processing flow. An
adapted version of the processing flow in [29] where the Bartlett beamformer is re-
placed by the MUSIC algorithm. (a) An eRTIS 3D imaging sonar [28] performs
an active measurement of the environment. (b) A matched filter used to amplify the
difference between the received signal and background noise. (c) Using complex
STFT we can extract the frequency information of the recorded signal and estimate
the range of the reflections (d) The one snapshot that will be used consists out of the
range-(single)frequency information across multiple channels, s(t). (e) Due to the co-
herency of the signal reflections it is important to investigate MUSIC algorithms that
can handle this. (f) Finally we get a 3D image showing the location of the reflectors.

MUSIC to detect the DOA of sources that are coherent. Lastly, we provide a small conclusion
about the different improvements and their own shortcomings.
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2 The MUSIC algorithm

2.1 Signal Model

The following model, commenly used in array signal processing literature (e.g. [5, 33]), was
used to describe a signal impinging on an array of receivers [16]:

xxx(t) = AAA(θ)s(t)+nnn(t) (1)

With xxx(t) being the received signals, AAA(θ) a steering matrix of dimension (L×M) when
there are L sensors in the array and M signals present, s(t) the signal vector, in our case it is
matrix containing single frequency values across multiple microphones over a certain range
(as illustrated in Fig. 2), and n(t) the noise vector [16]. Equation 2 shows the steering vector
a(θ ,ϕ) for an arbitrary 2D microphone array:

A(θ ,ϕ) = exp

[
− j

2π

λ

(
PxΨx(θ ,ϕ)+PyΨy(θ ,ϕ)

)]
Ψx(θ ,ϕ) = sin(θ) · cos(ϕ)
Ψy(θ ,ϕ) = sin(ϕ)

(2)

where Px, Py are the x and y coordinates of the individual microphone positions in a 2D plane, θ

is the azimuth angle and ϕ the elevation angle of the wave incident on the array. The wavelength
of the incident wave is represented by λ . In the simplified case of a Uniform Linear Array
(ULA) this representation can be simplified to equation 3:

a(θ) = exp
[
0 . . . − j 2π

λ
(L−1) ·d · sin(θ)

]T
A(θ) =

[
a(θ1) a(θ2) . . . a(θM)

] (3)

Where d represents the distance between the different elements of the array. When K snapshots
are taken, the received signal is noted by:

X(t) =
[
x(t1) x(t2) . . . x(tK)

]
(4)

2.2 MUSIC-algorithm

Now the used model has been defined, the MUSIC-algorithm can be explained. The first step is
to calculate the covariance matrix of the received signal RXX :

RXX = X ·XH (5)

With XH being the hermitian transpose of X . The covariance matrix will be decomposed into
eigenvalues and eigenvectors. Let U be a collection of all the eigenvalues and V be a collec-
tion of all the eigenvectors of RXX . Then U will contain L eigenvalues, whereof the largest
M eigenvalues will correspond to the present sources, while the L−M smallest eigenvalues
will correspond to the noise. Now one can span the noise subspace by selecting the L−M
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eigenvectors that match the smallest L−M eigenvalues. We will call this noise subspace En.

En =
[
V(1) V(2) . . . V(L−M)

]
(6)

Equation 6 only holds when the eigenvalues are sorted in an ascending order. Using this noise
subspace, the spatial pseudo-spectrum of the MUSIC algorithm can finally be calculated as:

PMUSIC(θ) =
1

ah(θ)EnEH
n a(θ)

(7)

For a more expanded introduction to MUSIC the reader is advised to look at [16].

One of the issues that arise when using MUSIC in practical real-life situations is that for
most versions the algorithm requires some a priori knowledge, such as the number of sources
(or reflectors in an active scenario as is most likely the case with in-air sonar). While doing the
research for this paper it was found that for the in-air sonar sensor used [28], the SNR is large
enough to determine the number of reflectors in the current scene by looking at the amount of
large eigenvalues (M) in U [16]. This allows for a more flexible way of measuring, making sure
all separable sources can be found. In case the SNR starts decreasing and this way of working
is no longer applicable it is possible to use methods such as the Akaike Information Criterion
(AIC) [23, 41, 47] or the Minimum Description Length (MDL) [14, 41] to estimate the number
of sources from a given dataset. Because of the simplicity and computational efficiency of the
SNR method compared to AIC and MDL, the SNR method was chosen for the measurements
done in this paper.

3 Improved MUSIC for coherent sources

The presence of coherent signals will be a limiting factor for the overall performance of the
MUSIC algorithm. These correlated signals will cause rank deficiencies in the covariance
matrix RXX which will in turn cause MUSIC to lose the ability to identify closely spaced
sources/reflectors. Literature has proposed several ways to restore the rank of RXX and regain
performance, in this section a few interesting approaches will be discussed.

3.1 Spatial Smoothing

The first improvement that will be discussed is spatial smoothing. Spatial smoothing is based
on averaging the covariance matrix RXX of identical overlapping arrays [27, 40]. This process
requires the array to be a ULA (altough there has been research for spatial smoothing on arbi-
trary arrays, given some restrictions [36, 37]). Spatially smoothing can restore the rank of RXX
after dividing the L sensors in subarrays of length P, with P being greater than the number of
coherent signal sources added with one [8] (although there will still be an increase in perfor-
mance even when the number of signal sources exceeds the number of subarrays). This is one
of the most used methods of restoring the rank of RXX , mostly because of its simplicity and
computational efficiency. The downside to spatial smoothing is the requirement that, for opti-
mal performance, the number of subarrays grows linearly with the number of coherent sources
and that it requires regular arrays. This provides an obvious limitation to the physical array. An
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in-depth explanation of how spatial smoothing is applied can be found in [34] and an extension
is proposed in [18] where a way to deal with impulsive noise environments is added.
In the case of in-air sonar, spatially smoothing the signal and then applying MUSIC could be
a valid candidate for DOA estimation. As illustrated in Fig. 2, the sonar sensor will transmit
a pulse and then calculate the range-dependent frequency spectrum using a short-term fourier
transform. The first calculated spectrum is that of the sources that are closest to the sensor. The
last ones are those of the sources that are the furthest away from the sensor. One can assume
that the number of coherent sources at the same distance is limited (when the range resolution
is high enough) and therefore the algorithm will perform better. In [44, 45] a special case of
spatial smoothing (MMUSIC) is discussed. These papers propose an algorithm where the co-
variance matrix is spatially smoothed with a subarray-length equal to the number of sensors in
the array. To achieve this a new matrix Y (t) is defined:

Y (t) = JMX∗(t) (8)

Where JM is the M×M backwards identity matrix and X∗(t) is the complex conjugate of the
original snapshot matrix X(t).

Gao et al.[45] use the covariance matrix of Yt and RYY (with RY = JMR∗X JM) in combination
with the original covariance matrix RXX :

RXY = (RXX +RYY )/2 (9)

This results in a more accurate detection algorithm without shortening the array. Furthermore,
it does not require a significant increase in processing power. Gao et al. also propose an even
larger improvement, Improved Modified MUSIC (IMMUSIC), based on matrix decomposition
(see [45]) in combination with spatial smoothing. This results in even better direction finding
performance with low SNR. In [30] an alternate approach in spatial smoothing is taken by
using only the signal subspace, claiming a lower sensitivity to noise. Spatial smoothing can
be expanded upon by assigning weights to the different subarrays or samples, one of these
subspace-based methods is termed as Weighted Spatial Sampling (WSS), in some literature also
referred to as Weighted MUSIC [1, 24, 38, 39]. In many cases there is significant performance
increase when comparing non-weighted to Weighted MUSIC [31, 32, 39]. Another way to
increase performance is to use Forward Backward Spatial Smoothing (FBSS) [7, 22, 24, 35, 36].
By smoothing over two sets of subarrays using the same sensors there is a significant increase
in performance at the cost of increased processing power.

3.2 Compressive Sensing (CS-MUSIC)

Compressive sensing is a technique for reconstructing a signal based on the principle that the
signal is sparse. In its essence, compressive sensing is a solution to the DOA problem that
is independent of the correlation of the signals. It is an iterative process that will attempt to
reconstruct s(t), under the assumption that the solution vector will be sparse. In in-air sonar,
this assumption is reasonable due to the used wavelengths and the subsequent prevalence of
specular reflections. The algorithm is based around an l1-regularized least-squares problem
which in its essence is a relaxed version of the l0-regularization which enforces sparsity. The
l1-regularization enforces sparsity while ensuring a convex minimization problem which can be
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solved efficiently. This translates to the sparse optimization problem as described in (10) [3]:

ŝ = arg min
s
||x−As||2 +λ ||s||p (10)

Where ||s||p is the lp norm of s. Typically the l1-norm is used due to its sparsity enforcing
nature and convex properties. In [13] a method is proposed to combine Compressive Sensing
with MUSIC. In this case, when there are no coherent sources present, the algorithm will behave
in the same way as the original MUSIC algorithm. When there are nothing but coherent sources
present, the algorithm will solve all the sources but one using compressive sensing, and will
find the last angle using MUSIC. The greatest downside of CS-MUSIC is that compressive
sensing takes a longer time than normal MUSIC and its adaptions discussed in this paper since
the minimization is an iterative process. In [21] CS-MUSIC is extended by using the mixed l1,2
norm instead of the l1 norm that is normally used. This results in a higher robustness to noise
when using a lower number of snapshots, which is interesting for in-air sonar where it is not
always possible to do multiple measurements.
Apart from the fact that Compressive Sensing can be computationally demanding, it can be
of interest to further investigate the possibility to implement it when using sonar sensors. It
should however be optimized since processing time is an important factor in many applications.
The expansion proposed in [21] can be especially useful since the need for a lower number of
snapshots can partially lower the processing time.

3.3 Restoration based on Toeplitz Matrices

A last improvement that will be reviewed is the MUSIC-algorithm in combination with the
exploitation Toeplitz theory [17, 23]. The correlation matrix of a ULA takes the shape of a
Toeplitz matrix. However, as stated before, when there are coherent sources present the rank
will degenerate and the matrix will no longer be a Toeplitz matrix. The essence of Toeplitz
theory combined with MUSIC is to average the diagonal elements of the correlated matrix, to
construct a new Toeplitz approximation matrix. The MUSIC algorithm can then be applied to
this newly generated approximation matrix. The downside of this method is that the approx-
imation results in a lower accuracy for the estimated DOA. (e.g., the angular accuracy of the
algorithm proposed in [2] is limited to 5 degrees). In [48] an improved method was suggested,
improving the angular accuracy to less than five degrees. It further appears to have an improved
SNR by using Fourth Order Cumulants to eliminate the Gaussian noise. Building on the idea
of using the Toeplitz matrix structure, [42] introduces a technique called Covariance Matrix
Reconstruction Approach (CMRA) which has been adapted to handle coherent source-spaces
in [43] by adding spatial filtering. The benefit of CMRA is that it requires no a priori knowl-
edge about the reflectors (which is preferably the case with normal MUSIC [10, 43]) and is
applicable to ULAs as well as Sparse Linear Arrays. It also works in a gridless fashion, giving
it a slight advantage compared to other sparse techniques that are confined to sparse sampling
on a grid. The computational complexity of this method is comparable to that of the spatial
smoothing technique.
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4 Conclusion

The MUSIC algorithm struggles to achieve a high angular resolution when coherent signals are
present in the measured dataset, which is mostly the case when using in-air sonar. In this paper
we explored the use of MUSIC in these scenarios and gave an overview of several useful meth-
ods that can counter this problem. The most promising method, spatial smoothing (especially
FBSS), achieves great results and also has variations on its own that allow for an even bigger
increase in performance.
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