
BeBeC-2018-D21

IMPACT OF THE LOCATIONS OF THE CONTROL POINTS ON

OPTIMAL SOLUTIONS FOR SELF-BENDING BEAMFORMING

Jens Ahrens

Division of Applied Acoustics

Chalmers University of Technology

412 96 Gothenburg, Sweden

jens.ahrens@chalmers.se

Abstract

Self-bending beamformers exhibit a sensitivity that bends over space in the nearfield

of the array. They were derived from caustic wave fields and have been presented in the

literature recently. It is fairly straightforward to obtain an analytic solution for the phase

profile that has to be imposed onto the array elements. This approach is termed phase

engineering. Deriving the corresponding gain profile is less straightforward. Solutions

that have been proposed in the literature so far are educated guesses as well as numerically

optimal solutions. The latter are the topic of the presented work. We use a convex approach.

We show that the locations of both the (single) target control point in the bright zone as

well as the (many) control points in the dark zone have a significant impact on the resulting

beam. Particularly, the control point locations in the dark zone have to be chosen carefully

so that the desired dark zone actually evolves. Choosing the target control point close to

the caustic creates the largest beam gradient along the caustic. A remarkable observation is

that prescribing a phase profile onto the elements of the array can also have a detrimental

effect, and solving for the complex beamformer weights can yield a better result. Based on

the observations we conclude that minimizing the norm of the beamformer weights does

not seem to be the most favorable approach for the present problem.

1 Introduction

Self-bending wave fields were first predicted in the field of quantum mechanics [5] and made

their way to acoustics via optics [14]. In optics, a phase profile is imposed onto a beam of light

via a phase mask, for example a transparent material of appropriately varying thickness [9]. The

phase profile that is imposed is taken from an optical wave front that forms a caustic. A caustic

occurs if the family of rays that represent the wave front exhibit an envelope and are tangent to
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that envelope. This envelope is then referred to as caustic. The same concept was applied to

acoustic fields in [17, 18] using an array of acoustic transducers that controlled the phase profile

of the evolving sound field.

The literature mentioned above focuses on the creation of self-bending wave fields. The

application of the concept to sensor arrays to achieve a self-bending sensitivity was proposed

in [2], which opens a new line of conceivable practical implementations. The mechanisms

for creating self-bending waves and self-bending sensitivities are essentially identical due to

the reciprocity of the Helmholtz equation. We will simply speak of self-bending beams in the

remainder of this paper, which may refer to either case.

The resulting beams exhibit distance dependent properties. A closely related domain is

nearfield beamforming, where a distance-dependent beam is typically achieved by taking the

curvature differences between planar and spherical waves into account [8, 11, 12, 19]. Both the

gain and the delay (or, equivalently, the complex weights) are determined for each of the array

elements. The extent to which physical limitations are taken into account in nearfield beam-

forming is typically limited so that robustness is achieved by regularization, which comes at the

price of a reduction in the performance that is difficult to control.

While deriving the phase profile that needs to be imposed on the element of an array is

straightforward, the original solution for self-bending beamforming employed educated guesses

for the gain profile [2]. A numerical solution for based on convex optimization was proposed

in [3]. For the investigated simple scenario, the performance of the optimal beamformer was

similar to the analytically derived one (i.e., the guessed solution). It was pointed out that it

depends fundamentally on the choice of location of the control points inside the dark zone how

well the self-bending property forms.

In the present paper, we summarize the basics of caustics and self-bending beamforming and

investigate a selected set of scenarios to shed more light on the dependency of the self-bending

property on the location of the control points based on a set of scenarios.

2 Self-Bending Wave Fronts

Self-bending wave fields are essentially fields that are composed of wave fronts that fold along

a caustic. As the Airy integral developed in the 1930s by Sir George Biddell Airy is a pow-

erful tool for explaining caustics, such waves are termed Airy wavepackets or Airy beams in

electromagnetics and in optics.

Obviously, the wave itself is not accelerated. Rather, the amplitude envelope of the wave field

appears to be bent. The concept of [17, 18] is illustrated in Fig. 1(a): A caustic is pre-defined

along which the wave front folds. In the high-frequency limit, the wave front does not traverse

the caustic. It is important to note that self-bending waves evolve only in the high-frequency

limit. This high-frequency limit is fulfilled if the considered wavelength is much smaller than

the curvature of the caustic. More generally, any significant changes to the wave amplitude have

to evolve at length scales much larger than the wavelength. Note that the caustic needs to be

convex in order that the wave perfectly avoids a given region in the high-frequency limit.

We choose the sample caustic from [2, 17], which is given by the cubic Bézier curve

B(t) = (1− t)3B0 +3t(1− t)2B1 +3(1− t)t2B2 + t3B3 , (1)

2



7th Berlin Beamforming Conference 2018 Jens Ahrens

with

B0 = [0,−0.2311]T , B1 = [0.1,0.0189]T

B2 = [0.25,0.1689]T , B3 = [0.98,−0.3311]T ,

to allow for a direct comparison of the results. We limit our observations to the x-y-plane so

that we define the four points that define the Bézier curve as Bi = [xi,yi,0]
T . The red line in

Fig. 1(a) illustrates (1). Note that the control variable t does not represent the traveled distance

along B(t), nor is it directly proportional to time when a wave moves along B(t).

3 Creation of Self-Bending Waves

As proven by, for example, Rayleigh’s first integral formula, a wave field can be synthesized if

its directional gradient is known along a reference plane and if there is a continuous distribution

secondary monopole sources along this reference plane [16]:

P(x,ω) =
∫∫ ∞

−∞
2

∂

∂n
S(x,ω)

∣
∣
x=x0

︸ ︷︷ ︸

=D(x0,ω)

G(x0,x,ω)dΩ(x0) . (2)

P(·) denotes the harmonic scalar wave field that evolves due to the monopole distribution along

the reference plane. G(x,x0,ω) = 1
4π

e−iω/c|x−x0|

|x−x0|
is the free-field Green’s function, i.e. the spatio-
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(a) Schematic of the principle of self-bending

wave fronts via rays; the red line indicates

the prescribed caustic given by (1); the gray

lines are sample tangents of the caustic; the

blue/green lines are sample wave fronts; time
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(b) Unwrapped phase profile φ(·) of the ar-

rays depicted in Fig. 2

Figure 1: Schematic of a caustic and corresponding phase profile at the reference line x = 0
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temporal transfer function of the secondary monopole sources. S(·) is an arbitrary virtual scalar

wave field that is source-free in the target half-space that is bounded by the reference plane.

dΩ(·) is an infinitesimal surface element. x0 is a position on the reference plane.

When the secondary monopoles are driven with two times the gradient ∂/∂n of S(·) in direc-

tion normal to the boundary and evaluated at the boundary, then the synthesized wave field P(·)
is identical to the virtual (prescribed) field S(·) inside the target half-space. It is proven in the

Appendix that the phase profile ∠D(·) of the driving signal is identical to the phase φ(x0,ω)
of the harmonic field at the positions of the secondary sources. It is therefore possible to cre-

ate a self-bending wave by imposing the back traced phase profile of the self-bending wave

onto a planar array of sufficiently densely spaced transducers. This approach is termed phase

engineering [17, 18].

Eq. (9) in the Appendix also shows that the purely real gain (or amplitude profile) |D(·)| of

the secondary sources is given by A(x0,ω)φ ′(x0,ω) , whereby A(·) is the amplitude distribution

of the self-bending field along the reference plane, The prime ′ represents spatial differentiation.

4 Linear Arrays

Planar transducer arrays are inconvenient as the required number of elements is high. When

wave field synthesis inside a given plane is targeted, then also linear arrays may be employed.

The driving functions D(·) are identical to those for planar arrays apart from a global frequency

dependent factor. This type of scenario is termed 2.5-dimensional and is well known in sound

field synthesis [1]. The curvatures of the wave fronts that evolve are identical to the prescribed

ones inside the target half-plane. The control over the amplitude decay of the synthesized field

over distance to the array is limited. The synthesized wave field is obviously invariant with

respect to rotation about the axis through the array’s elements.

For convenience, we assume a linear array of transducers here. Due to the reciprocity of

the Helmholtz equation, we may interpret the beam as the amplitude distribution of the synthe-

sized sound field (when loudspeakers are assumed) or as amplitude distribution of the array’s

sensitivity (when microphones are assumed).

5 Optimal Array Pattern Synthesis

A vast amount of literature exists on numerically optimal array pattern synthesis in the domain

of beamforming both for signal-dependent scenarios as well as for the present case of signal-

independent scenarios [15]. A variety of optimality criteria exist. A typical criterion for signal-

independent farfield scenarios is maximizing the so-called white noise gain (WNG) [10], which

represents the gain of the target signal (i.e., the desired signal) that the beamformer achieves

relative to spatially white noise. A convex solution incorporating a constraint on the WNG of

a farfield beamformer is presented in [13]. This scheme is not convenient in the present case

as it is inconvenient to define what is the location of the target signal as there are many useful

options.

We therefore adapt the approach that is typically applied in nearfield beamforming: We as-

sume a discrete set of array elements and find the set of weights D(x0,ω) that minimize the

beam amplitude in the dark zone (signals from which are intended to be suppressed) while main-

taining unit amplitude at the target location [12]. This can lead to very aggressive and therefore
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non-robust solutions, which are not applicable when the actual array exhibits the slightest devi-

ations from the assumptions. A lack of robustness is typically an indication for a large range of

gains of the array elements. Regularization can be applied, which modifies the solution in order

to squash this range at the expense of an (uncontrolled) reduction in performance.

We employ the convex approach from [7] here in which we specify the performance and

aim at finding the set of gains with the lowest norm ‖D(·)‖ that enables the desired perfor-

mance. D(·) is the vector containing the weights of all (discrete) array elements. Searching for

the lowest norm inherently squashes the range of weights with relaxation of the performance

requirements.

More explicitly, the present optimization problem reads

min‖D(x0,ω)‖ (3)

subject to

G(x0,xt ,ω)D(x0,ω) = 1, (3a)

|G(x0,xd,ω)D(x0,ω)| ≤ 10
C
20 (3b)

whereby C denotes the desired attenuation in dB at the control points xd in the dark zone relative

to the target location control point xt in the bright zone.

G(x0,xt ,ω) =








e−iφ1(ω)G(x0,1,xt,ω)

e−iφ2(ω)G(x0,2,xt,ω)
...

e−iφN(ω)G(x0,N,xt,ω)








T

(4)

is a vector containing the transfer paths from the N individual array elements indexed by n to

the target location in the bright zone, and

G(x0,xd,ω) =








e−iφ1(ω)G(x0,1,xd,1,ω) . . . e−iφN(ω)G(x0,N,xd,1,ω)

e−iφ1(ω)G(x0,1,xd,2,ω) . . . e−iφN(ω)G(x0,N,xd,2,ω)
...

...
...

e−iφ1(ω)G(x0,1,xd,M,ω) . . . e−iφN(ω)G(x0,N,xd,M,ω)








(5)

is a matrix containing the transfer paths from the N individual array elements to the M control

points in the dark zone. Note that we search for purely real D(·). The phase engineering is

performed by incorporating the caustics-based phase profile φ(x0,ω) into the transfer paths

G(x0,xd,ω).

6 Results

Refer to Fig. 2 for sample monochromatic self-bending beams based on the caustic that is

defined by (1) and depicted in Fig. 1(a). The array of isotropic (monopole) elements extends

along the y-axis from y = 0 to y = 25λ . Fig. 1(b) depicts the phase profile that was imposed
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(a) Equal amplitude of 1 imposed on all array elements
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(b) Cosine-squared amplitude profile imposed on the ar-

ray elements

Figure 2: Magnitude in dB of the beam of a sample linear array of 51 isotropic (omnidirec-

tional) elements of length L = 25λ located on the y-axis; the element spacing is

∆y = 0.5λ (i.e. critically spaced); the black marks indicate the locations of the array

elements; the black line represents the caustic
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Figure 3: Sensitivity of the array from Fig. 2(b) in the presence of a rigid spherical scattering

object (indicated by the white disc)

on the array elements. Fig. 2(a) shows the resulting beam amplitude when an equal purely

real gain is imposed on the array elements additionally to the phase profile. This corresponds

to the approaches presented in [17, 18]. The attenuation in the quiet zone is in the order of

20 dB compared to locations along the caustic. Fig. 2(b) shows the resulting beam when a
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cosine-squared shaped weighting is imposed on the array elements. The difference to Fig. 2(a)

is eminent [2]. A pronounced quiet zone evolves south of the caustic indicated by the black line.

The attenuation in the quiet zone is in the order of 60 dB or more compared to locations along

the caustic. Note that the cosine-squared shaped amplitude profile works well in the present

scenario. It cannot be considered a general solution.

A noteworthy property of the beamformer is that it rejects all sound that originates from the

dark zone directly or indirectly. This means that it also rejects all signals that are reflected by

objects located in the dark zone. This circumstance is illustrated in Fig. 3, which shows the

beamformer from Fig. 2(b) but with a rigid spherical object present in the dark zone. Note that

the presence of this object does not influence beamformer’s sensitivity.

Fig. 4 depicts the numerical solutions for the scenario from Fig. 2(b) according to (3).

A remarkable observation is that although we are solving (3) for purely real weights in

Fig. 4(a)-(c), it is generally not such that all weights exhibit the same algebraic sign like our

physical model of phase and magnitude would suggest it. (Note that a change in sign is equiva-

lent to a phase jump by π .)

Another important observation when comparing Fig. 4(a)-(c) is that the choice of control

points has a fundamental effect on the spatial evolution of the beam [3]. The mere prescription

of a phase profile onto the array elements does not narrow down the solution space sufficiently.

However, it seems unreasonable to sample the dark zone densely with control points. The

contour in Fig. 4(c) is a shifted copy of a segment of the prescribed caustic and constitutes a

useful choice. It prevents the beam from entering the dark zone.

Instead of solving (3) for purely real weights, we can, of course, also skip prescribing a phase

profile and solve for complex weights. At first sight, we are thereby removing all physics from

the problem. However, by using the same control points like in Fig. 4(b), we are inherently

assuming the solution to be related to the modelled caustic. The result depicted in Fig. 4(d) is

very comparable to Fig. 4(c). Bear in mind that we have two times the amount of variables to

solve for (the real part as well as the imaginary part of the weights) so that it appears useful to

choose two times as many control points. Remarkably, the resulting phase profile is very similar

to the manually derived one apart from a constant offset (see the top-left inset in Fig. 4(d)).

Fig. 5 depicts variations of the scenario from Fig. 4(c). Fig. 5(a) uses a control point spacing

∆xd that is precisely 0.5λ , whereas Fig. 5(b) uses exactly the same contour of control points but

only half the amount and with ∆xd = λ . Note that the problem is significantly underdetermined

in the latter case. Still, the problem is solved, i.e., the optimization conditions (3a) and (3b) are

fulfilled, and the resulting beam pattern is useful. Keeping ∆xd = λ but using a sufficient num-

ber control points to have an overdetermined solution as in Fig. 5(a) increases the attenuation in

the dark zone. This suggests that the control point spacing ∆xd is not the only decisive factor.

The underdetermined solution with narrow control point spacing in Fig. 5(c) is also viable

(the optimization conditions (3a) and (3b) are fulfilled), but the resulting dark zone is smaller

than desired.

Fig. 6 and 7 depict a self-bending beamformer based on a caustic given by the polynomial

y =−0.01∗ (x+2)3−0.06∗ (x+2)2+0.32 , (6)

and Fig. 8 depicts a self-bending beamformer based on the polynomial from (6) but rotated by

30◦. This yields a curvature of the caustic that is significantly more gentle than the one from

the previous figures.
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(a) Phase profile from Fig. 1(b) and optimal

real weights; 52 control points were used (51

+ 1)
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(b) Phase profile from Fig. 1(b) and optimal

real weights; 52 control points were used (51

+ 1)
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(c) Phase profile from Fig. 1(b) and optimal

real weights; 52 control points were used (51

+ 1)
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(d) Complex weights with no prescribed

phase profile; 93 control points were used

(92 + 1); the top-left inset shows the result-

ing phase contour with the analytically derived

profile from Fig. 1(b) as reference

Figure 4: Magnitude in dB of the beams produced by the array from Fig. 2 using optimal so-

lutions according to (3); C =−80 dB; the white cross marks the control point in the

bright zone; the white points mark the control points in the dark zone; the top-right

inset shows the resulting real gain profile (orange) with the cosine-square profile as

reference (blue)

Using the phase profile determined by the caustic as well as a cosine-squared amplitude

profile yields a useful beam pattern as depicted in Fig. 6(a). For investigating the optimal

solutions, we always use the same 205 control points in the dark zone but vary the location of

the target control point in the bright zone. Fig. 6(b)-(d) depict the result of the optimization for

complex weights D(·). It can be seen that the a dark zone arises in the desired manner. The

structure of the beam in the bright zone varies significantly with the location of the target control

point xt . Choosing xt close to the caustic causes the strongest gradient of the beam along the
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(a) 51+1 control points with spacing ∆xd =
0.5λ

0 5 10 15 20 25 30 35 40

-10

-5

0

5

10

15

20

25

30

-80

-70

-60

-50

-40

-30

-20

-10

0

0 10 20

-1

0

1

2

x/λ

y/
λ

y0

|D
(y

0
) |

(b) 25+1 control points with spacing ∆xd = λ
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(c) 25+1 control points with spacing ∆xd =
0.5λ
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(d) 51+1 control points with spacing ∆xd = λ

Figure 5: Variations over the scenario from Fig. 4(c)

caustic. The resulting phase profile can depart considerably from the one derived based on the

prescribed caustic (see the bottom insets).

Fig. 7 depicts the same scenario but with the phase profile prescribed and optimized for purely

real weights. Remarkably, the resulting beam departs significantly from the desired one. It is

even such that the optimization problem is not solved in Fig. 7(b) and (c). This is despite the

fact that the prescription of the caustic’s phase profile adds meaningful physical contraints to

the problem.

Finally, Fig. 8 uses the caustic described by (6) and rotated by 30◦. The observations are

equivalent to the ones made with Fig. 6 and 7, i.e., a dark zone forms as desired, the structure

of the beam in the bright zone depends strongly on the location of the target control point in the

bright zone, and imposing the manually derived phase profile can lead to unusable results. We

only present the simulations of the optimization for the complex weights for convenience.
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(a) Analytic phase profile and cosine-squared

amplitude profile
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(b) xt = (25,−7)λ
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(c) xt = (25,0)λ
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(d) xt = (25,7)λ

Figure 6: Magnitude in dB of the beams produced by a critically-spaced array of length L= 50λ
using optimal solutions according to (3) for different locations of the control point xt

in the bright zone; C =−80 dB; the caustic is given by (6); the white cross marks xt;

the white points mark the 205 control points in the dark zone; the optimization was

performed for the complex weights D(x,ω); no phase profile was imposed

7 Conclusions

We investigated the impact of the control point locations on optimal solutions for self-bending

beamforming. We showed that the choice of control points in the dark zone has to be made

with care so that the dark zone actually evolves as desired. There is somewhat more freedom in

choosing the target control point in the bright zone, which can have a considerable impact on

the structure of the beam in the bright zone.

The problem may be underdetermined and still solvable. Choosing so few control points that

an underdetermined problem evolves seems to have an unfavorable effect on the attenuation in

the dark zone. Similarly, the spacing between the control points in the dark zone may be larger

than half a wavelength. The loss in attenuation is only moderate in this case.
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(a) Analytic phase profile and cosine-squared

amplitude profile imposed
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(c) xt = (25,0)λ (optimization problem not

solved)
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(d) xt = (25,7)λ

Figure 7: Same scenario like in Fig. 6 but with the manually derived phase profile imposed (and

optimized of the purely real gains)

Certain types of self-bending beams do not benefit from prescribing a phase profile, which

was manually derived from the caustic underlying the self-bending wave field. Quite in con-

trary, we have achieved as good or sometimes even much better solutions when optimizing for

the complex beamformer weights without prescribing any phase profile and therefore no explicit

consideration of the desired caustic. This caustic is still implicitly considered due to the choice

of the locations of the control points. This suggests that minimising the norm of the beam-

former weights is not the most ideal approach for the present problem. A more physics-inspired

solution is desired.

The investigation of the robustness of the approach was beyond the scope of this paper. The

reader is referred to the results from [2] obtained that were obtained with a cosine-squared

window.
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(c) xt = (25,0)λ
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Figure 8: Same situation like in Fig. 6 but with the caustic rotated by 30◦

APPENDIX: DERIVATION OF THE SECONDARY SOURCE PHASE PROFILE

Consider the driving function D(x0,ω) for the secondary source at x0 to synthesize a sound

pressure field S(x,ω) as given by (2). The directional gradient ∂
∂n

is defined as [4]

∂

∂n
= cosαn sinβn

∂

∂x
+ sinαn sinβn

∂

∂y
+ cosβn

∂

∂ z
, (7)

with αn being the azimuth of the orientation of n and βn being the colatitude. For the present

case of n pointing in positive x-direction, ∂/∂n simplifies to ∂/∂x.

Recall that we assume stationary conditions and time-harmonic signals in this paper. We may

express S(x,ω) as

S(x,ω) = A(x,ω)eiφ(x,ω) (8)

with purely real amplitude A(x,ω) = |S(x,ω)| and purely real phase φ(x,ω) = ∠S(x,ω). Dif-
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ferentiation of (8) with respect to any of the Cartesian dimensions yields

(

A(x,ω)eiφ(x,ω)
)′

= A′(x,ω)eiφ(x,ω)+A(x,ω)
(

eiφ(x,ω)
)′

=
[
A′(x,ω)+A(x,ω)iφ ′(x,ω)

]
eiφ(x,ω)

⋍ A(x,ω)φ ′(x,ω)eiφ(x,ω)+i π
2 , (9)

where in the last step we made use of the stipulated assumption that the high-frequency limit

applies, i.e.

∣
∣
∣

∂
∂n

A(x,ω)
∣
∣
∣≪

∣
∣ω

c
nA(x,ω)

∣
∣, which is known as the eikonal approximation [6].

Recall that (2) states that D(x0,ω)∝
(

A(x,ω)eiφ(x,ω)
)′ ∣
∣
x=x0

. We can deduce from (9) that, in

the high-frequency limit, the phase profile φ(x0,ω) of the driving function D(x0,ω) is identical

to the phase profile of the desired sound field on the secondary source contour and the term

A(x,ω)φ ′(x,ω) in (9) represents the (purely real) weight profile to be applied.
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