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Abstract

Identification of acoustic sources plays an important role in acoustic design improve-
ments for a wide area of applications. Eigenvalue based general inverse beamforming
(GIB) has proven to be a valuable tool for acoustic source characterization. This work
aims to compare different regularization strategies which solve the GIB algorithm. The
classical L1 formulation of GIB is compared with LassoLars, Orthogonal Matching Pursuit
and non-negative least squares solvers. The algorithms are applied to measured data from
an airfoil in an open jet with a planar microphone array. The NACA-0012 airfoil under
subsonic flow conditions is described using monopole identifications. The GIB results are
compared qualitatively and quantitatively to previous beamforming results using DAMAS
and CMF algorithms.

1 INTRODUCTION

Noise source identification by source map imaging using phased microphone arrays has become
a useful and common tool in acoustic engineering. Aside from classic delay-and-sum (DAS)
beamforming, several deconvolution algorithms have been developed and tested to increase
the resolution of the beamforming result. Acoustic studies on a reference setup on an airfoil
have been conducted by Herold et al.[5, 6] using DAMAS[2], CMF[17], CLEAN-SC[14] and
Orthogonal Beamforming[11] deconvolutions. Another representative algorithm is the gener-
alized inverse beamforming (GIB) presented by Takao Suzuki [15]. The algorithm is based on
the decomposition of the cross spectral matrix into eigenmodes and formulating a source model
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for each eigenmode. The target of this contribution is to discuss GIB regularisation strategies,
which are applied to measurement data of an airfoil in an open jet.

2 GENERAL INVERSE BEAMFORMING AND SOLVING STRATEGIES

Microphone array methods rely on the evaluation of signals recorded at a number of distributed
sensors. The general inverse beamforming algorithm works in the frequency domain and is
based on the calculation of the cross spectral matrix (CSM). For the signals of M microphones
in an array the CSM can be computed using Welch’s method [16]: The time signals from each
microphone are divided into K blocks, onto which an FFT is applied, resulting in a complex
pressure vector pk for each discrete frequency. The CSM is calculated by averaging the cross
spectra between the microphone channels:

CSM =
1
K

K

∑
k=1

pkpH
k (1)

Since the cross spectral matrix is Hermitian and non-negative definite, it can be decomposed
into a unitary matrix U consisting the eigenvectors ui and a diagonal matrix Λ consisting the
corresponding eigenvalues λi:

CSM = UΛΛΛUH (2)

For each eigenvalue λi and eigenvector ui we can define the an eigenmode vi as:

vi =
√

λiui (3)

Each eigenmode can be related to a complex source amplitude qi for each grid point N on a
target domain. With a transfer matrix A we can define a linear system for each eigenmode:

vi = Aqi (4)

For the source model monopole sources are considered. The entries of the transfer matrix A
are calculated with :

Amn =
r0n

rmn
e−ik(rmn−r0n) , m = 1...M , n = 1...N (5)

with r0n being the distance from one focus point to the m-th of M microphones and rmn
the distance from the m-th microphone to the n-th grid point. The system can be solved by
minimizing the Jp cost function:

minimize Jp = ‖q‖p
p +λ (Aq−vi) (6)

which can be rewritten as:

minimize Jp = ‖Wq‖2
2 +λ (Aq−vi) (7)

The weight matrix W is a diagonal matrix, each element is given by Wii = |qi|p−2. The solu-
tion can be calculated iteratively using the generalized inverse technique as proposed by Suzuki
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[15]. Depending on the size of the problem two different solutions exist. For an underdeter-
mined system (N > M) the system is solved by:

q̂it+1 = WitAH(AWitAH + εI)−1vi) (8)

For the overdetermined system (N < M) it is solved by:

q̂it+1 = AH(AAH + ε(Wit)−1)−1vi) (9)

With ε being a fraction of the biggest eigenvalue of AAH . Alternatively to solving the com-
plex valued system an equivalent real valued problem can be formulated [3]:(

ℜ{A} −ℑ{A}
ℑ{A} ℜ{A}

)(
ℜ{qi}
ℑ{qi}

)
=

(
ℜ{vi}
ℑ{vi}

)
(10)

The real valued problem can be rewritten as:

Aqi = vi (11)

The system can also be formulated such that it can be evaluated with efficient non-negative
least squares (NNLS) solvers [7]:

minimize ‖vi−Aqi‖2 , qi > 0 (12)

The NNLS formulation can be extended with the introduction of a penalty term α‖qi‖1

minimize ‖vi−Aqi‖2 +α‖qi‖1 , α > 0 (13)

The combination of the regularisation factor α and the L1 norm of the distributed source
amplitudes enforces sparsity of the solution. By increasing α the penalty term increases and
the sparsity of the solution increases as well. One possibility to solve this problem is using a
Least Angle Regression Lasso algorithm (LassoLars) [4]. Choosing an optimal regularisation
factor α for the algorithm depends on the measurement data and the experimental setup. There
are different practical approaches to determine an optimal α . For example automatic criterion
models like the Bayesian information criterion (BIC)[18] or eigenvalue based calculations like
proposed by Yardibi [17]. Another possible algorithm for finding a sparse solution is the Or-
thogonal Matching Pursuit (OMP)[8, 9]. The principle of this greedy algorithm is to only use
a subset of the available data, which is determined by iteratively selecting those columns of A
which best approximate the eigenmode result vi. For reducing possible reconstruction errors, a
version of the algorithm employing cross-validation is used (OMPCV)[1].

For the evaluations in this study, the implementation of the above algorithms in the machine
learning python library scikit-learn [10] were used in combination with the array data processing
library Acoular [13].

3 EXPERIMENTAL SETUP

The experiment was conducted in an aeroacoustic wind tunnel at Brandenburg University of
Technology [12]. The setup consists of a NACA 0012 airfoil positioned in an open jet (diameter
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0.2 m, core velocity 50 m
s ). The airfoil has a span of 0.28 m and a chord length of 0.25 m;

boundary layer tripping was realized with a 2.5 mm anti-slip tape applied at 10% of the chord
on the suction as well as on the pressure side. Figure 1 shows a schematic depiction of the
measurement setup. The microphone array is positioned outside the flow and 0.715 m above the
airfoil. It consists of 56 microphones and has a maximum diameter of 1.3 m. The measurement
time was 40 s, with a sampling rate of 51 200 Hz. For the estimation of the cross spectral matrix,
the time histories were partitioned into 1000 blocks of 4096 samples each. A Hanning window
was applied to each block and an FFT and subsequent power spectrum average with 50% block
overlap were used.

airfoil at z = 0 m

nozzle

50 m
s

core jet
mixing zone

microphones at
z = 0.715 m

y/m

x/m-0.5 -0.25 0 0.25 0.5

-0.2

-0.1

0

0.1

0.2

Figure 1: Setup used for the measurements.

4 RESULTS

Basis of the evaluations are sound pressure level maps for the 1/3 octave bands at 1, 2, 4, and
8 kHz, as shown in Figures 2 to 8. The nozzle is positioned at the left, and the position of the
airfoil is marked by the blue rectangle in the center of the maps. The dotted lines indicate the
integration areas for the trailing edge spectra shown in Figure 9.

The results of the general inverse beamforming algorithm strongly depend on the numbers
of eigenvalues considered for the calculation. For this experimental setup, only the first 4 of
56 eigenvalues of the CSM contributed a significant amount to the result. Therefore, only the
results for those 4 eigenvalues are considered in the calculation and displayed in the source
maps.

The Figure 2 shows the result obtained with the general inverse beamforming algorithm of
Suzuki. For the calculation the considered norm was set to L1, the number of iterations to 10
and the regularisation parameter ε to 10−3. At the 4 and 8 kHz bands the approach shows the
trailing edge noise as a line source and the noise generation at the leading edge over the edges
of the profile. For the 1 kHz band the noise generation at the nozzle and on the edges of the
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trailing edge are visible. At 2 kHz the source identification does not show any airfoil noise and
the highest values are reached at the border of the calculation area.
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Figure 2: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm of Suzuki. The colorbars represent the sound pressure level Lp in dB.

The maps shown in Figure 3 is obtained using the NNLS solver [7] on Eq. 12. At the two
lower frequency bands the solution is very sparse, but fails to identify the main sources. For
the 2 higher frequency bands the identification is better, but the dynamic is very low and the
solution contains artefacts.
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Figure 3: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and NNLS solver.

The Figures 4 till 7 show maps using different α to solve Eq. 13 with a LassoLars solver
[4]. For α = 10−4 the solution is reduced to a sound pressure of zero for the 2, 4 and 8
kHz band. For the 1 kHz band it is reduced to a small source at the trailing edge region. The
regularisation parameter α is chosen too high in this case and the sparsity constraint is to strong
to accomplish a suitable solution. Reducing α leads to more distributed noise sources, but
reduces the possibility of resulting in a zero solution. Figure 5 shows the source maps obtained
with α = 10−6. The noise sources at the trailing and leading edge become visible for all 4
one-third octave bands. The trailing edge noise appears as a line source at the 4 and 8 kHz
bands. The maps for α = 10−9 are shown in Figure 6. The source distribution is very similar
to the one with α = 10−6 but more detailed at the leading edge and not as sharp at the trailing
edge, especially at 4 and 8 kHz bands. The lower regularisation factor leads also to a lower
dynamic at higher frequencies. Decreasing α further would create a result similar to the NNLS
result. Using an automatic algorithm to determine the optimal regularisation parameter can be
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helpful for the calculation, since the manual selection of a suitable choice can be effortful. The
BIC [18] is one possible method for the parameter selection of α . Figure 7 shows the source
maps for the automatic calculated α according to the BIC. The criterion results in an α similar
to α = 10−4. The solution is very sparse, with only a few non-zero points at the trailing and
leading edge for the 1,2 and 4 kHz bands. For the solution for the 8 kHz band is all-zero.
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Figure 4: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and LarsLasso solver with α = 10−4.
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Figure 5: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and LarsLasso solver with α = 10−6.
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Figure 6: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and LarsLasso solver with α = 10−9.
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Figure 7: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and LarsLasso solver with α chosen according to the BIC.

Figure 8 shows the result using the orthogonal matching pursuit method. The 1/3 octave
bands at 4 and 8 kHz show a distribution like the LassLars solver with α = 10−6.However,
the Trailing edge line source appears to by sharper at 8 kHz. At the 2 kHz band the leading and
trailing edge sources are scattered over the airfoil area. The sources at the 1 kHz band are not
distributed in a meaningful manner.
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Figure 8: Source maps for the 1,2,4 and 8 kHz one-third octave bands, obtained with the GIB
algorithm and OMPCV solver.

For quantitative comparison, the trailing edge spectra is computed by integrating the sound
pressure over the area inside the dotted rectangle in the source maps. Figure 9 shows the one-
third octave spectra for the different solvers between 800 and 10000 Hz. For a better distinction
each line was shifted slightly, still the bands are centred around the frequencies on the x-axis.
The spectra for the LassoLars solvers with α = 10−6 and α = 10−9 are almost identical to
each other. The spectra for α = 10−4 and BIC strongly derivative from the others. This can be
linked to the computation resulting in an all-zero solution for a wide range of frequencies. The
OMPCV algorithm produces a spectrum with the same characteristics as the LassoLars with
α = 10−6, but causes a approximately 10 dB higher sound pressure level. In contrast, the
spectrum generated with the algorithm of Suzuki yields a lower sound pressure level. The spec-
trum produced by the NNLS solver also deviates heavily from the other spectra. Its maximum
of 92.5 dB is reached at the 3.15 kHz band, which is not observable for any other algorithm.

Apart from the differences in the calculated source maps and spectra, the methods also differ
in computational cost. The computation time for the generalized inverse beamforming is com-
pared to the DAMAS and CMF using the same algorithms and parameters for each method.
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Figure 9: One-third octave spectra of trailing edge noise for different GIB algorithm solvers.

In Table 1 the relative calculation times are listed. The GIB-NNLS computation time is used
as the comparative value. The calculation time for the point spread function, which is needed
for the DAMAS calculation, is omitted in this comparison. The NNLS solver takes nearly the
same time to solve the GIB and DAMAS method, but takes 5 times longer for the CMF method.
The LassoLars algorithm is generally faster then NNLS, but takes longer for smaller α . For big
enough α the calculation results in a all-zero solution very fast. The LassoLars-BIC algorithm is
40 times faster for the GIB method, but does not produce a meaningful result in this setup. The
orthogonal matching pursuit takes the same order of computation time as NNLS for the GIB
and CMF method, thought it takes about 4 times longer for the DAMAS deconvolution. The
algorithm of Suzuki is considerable slower then the other algorithms in this study. However,
this might also be an issue caused by a different implementation strategy.

Table 1: Relative calculation time for GIB, DAMAS and CMF.

GIB DAMAS CMF
NNLS 1 0.82 5.42
LassoLars α = 10−4 0.23 0.14 0.30
LassoLars α = 10−6 0.31 0.13 0.29
LassoLars α = 10−9 0.63 0.27 2.05
LassoLarsBIC 0.25 - 9.79
OMPCV 1.28 3.53 5.42
Suzuki 21.19 - -
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5 Conclusion

The general inverse beamforming method was used on aeroacoustic measurement data from a
wind tunnel experiment. Several different algorithms were used to solve the inverse problem.
The results vary significantly based on the algorithm as well as on the parameters used for each
algorithm. For this setup neither NNLS nor LassoLars with BIC and α = 10−4 as regularisation
parameter provide a satisfying result. The method of Suzuki and OMP deliver good results
above 4 kHz but fail to produce meaningful results at lower frequencies. The best overall
performance was archived with the LassoLars algorithm and a fixed regularisation parameter.
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