Microphone-Array Measurements in Wind Tunnels Challenges and Limitations

Berlin Beamforming Conference 2012

Lars Koop, Stefan Kröber, Thomas Ahlefeldt, Klaus Ehrenfried, Carsten Spehr

German Aerospace Center Institute of Aerodynamics and Flow Technology, Experimental Methods Bunsenstr. 10 37073 Goettingen Germany

Phone: +49 551 709 2460 Fax: +49 551 709 2830 e-mail: lars.koop@dlr.de

Outline

- Status quo of microphone array measurements in closed and open test section wind tunnels
 - → Typical setup of industrial wind tunnel measurements
 - \rightarrow Application in ground transportation
 - → Summary and conclusions
- \neg Challenges and limitations, open issues
- → Two examples:
 - \neg Re-number effects \rightarrow Measurements in cryogenic wind tunnels
 - \neg Comparability \rightarrow Measurements in different test facilities
- → Conclusion

Measurement in industrial closed test section WT Measurement setup

Measurement in industrial closed test section WT Measurement setup

- → Frequency range:
- **→** Number of channels:
- → AD conversion:
- → Filters:
- → Gain factor:
- → Dynamic range:
- → High pass filter:

f_{s,max} = 250 kHz 7 x 48 = 336 at DLR

16-bit sigma/delta Several high-pass and low-pass filters **0.5 to 500000**

≥ 80 dB

500 Hz or 6 kHz (A weighting)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Measurement in industrial closed test section WT Results, Source maps

Measurement in industrial closed test section WT Results, SPL for variation of angle of attack

Measurement in industrial closed test section WT Noise in closed test section measurements

- → SPL of single microphone vs. SPL calculated from microphone array
- \neg Reduction of noise by 21 dB (144 times)

in der Helmholtz-Gemeinschaft

Measurement in industrial closed test section WT Reduction of high frequency random pressure fluctuations

- → Turbulent boundary layer of a wall in a closed test section
- → Reduction of noise from turbulent boundary-layer (TBL) pressure fluctuations → diagonal removal (DR)

Measurement in industrial closed test section WT Reduction of low frequency background noise

- → Closed test section: background noise in low frequencies
- Upstream propagating waves (acoustically hard side-walls)
- → Waves cause artifacts in source maps

in der Helmholtz-Gemeinschaft

- → Reduction by 6 dB with BiClean algorithm
- → Subtracting of Low frequency background noise (noise = plane wave)

-2

-10

12

0.8

Measurement in industrial closed test section WT

Improved spatial resolution by deconvolution – Embedded DAMAS, CLEAN-SC

Deutsches Zentrum Für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 10 BeBeC 2012> L. Koop

Measurement in industrial closed test section WT Sensor calibration

- → Comparison with a reference microphone
- → Traversable speaker for exact positioning in top of every microphone

 $\overline{}$

reference 1: pressure-field microphone mounted in plate

reference 2: free-field microphone mounted in foam

Measurement in industrial closed test section WT Sensor calibration

<u>Array-microphone sen. (example)</u>

→ ≈ flat response:
 1 kHz < f < 20 kHz

Comparison of references

→ ≈ 6 dB difference at overall frequency range

Measurement in industrial closed test section WT Truck model in DNW-KKK @ ambient temperature

- → Truck model in DNW-KKK
- → Test parameters: Ma = 0.253, T = 290.3K
- \neg Re = 1×10⁶ (w.r.t. width of the truck)
- → SPL [dB] with 12 dB Dynamic

Slide 13 BeBeC 2012> L. Koop

Measurement in open test section WT (AWB) High speed train

- → Measurement on ICE 3, 1:25
- → Details:
 - Bogies, Pantograph, Gap between traction unit and first car

Measurement in open test section WT (AWB) **High speed train**

- \neg High-speed train in aeroacoustic Ξ wind tunnel (AWB)
- $7 f_{1/3} = 12.5 \text{ kHz}$
- $-7 U_{m} = 40 \text{ m/s}$
- → Dynamic range: 12 dB
- Main sources: $\overline{\mathbf{z}}$
 - 1. Pantograph
 - First bogie 2.
 - Third bogie 3.
 - Cavity 4.
 - Second bogie 5.

Microphone array measurements in wind tunnels Status and conclusions

- \neg Microphone array measurements in wind tunnels
 - → Source localization and quantification
 - → Quantification of level differences (configuration, modification)
 - → Noise source ranking
 - → Frequency range:
 - \rightarrow 2 kHz 63 kHz \rightarrow closed test section
 - \rightarrow 500 Hz 16 kHz \rightarrow open test section
- \rightarrow DLR arrays can be installed in any closed and open test-section WT
 - → Mobile system
 - ✓ Minor installation effects: Measurement in parallel to aerodynamics
- → Very fast measurement techniques

Microphone array measurements in wind tunnels Limitations → Error sources

- \neg Real-flight Reynolds numbers are not achieved in conventional wind tunnels
- Comparability between results from different test facilities (open, closed) and between wind tunnel and full scale aircraft (train, vehicle) not guaranteed
- Airframe noise is simulated by scaled and therefore simplified wind tunnel models
- → Microphones are exposed to pressure fluctuations originating from turbulent boundary layer → near field noise
- Different type of sound sources (monopole, dipole..., coherent) results in different results
- → Wind tunnel background noise leads to a limited measurement range → low signal-to-noise-ratio
- → Reliability and accuracy of data analysis

Microphone array measurements in wind tunnels Challenges \rightarrow Open issues in MA wind-tunnel measurements

- → Assess Re-number dependency of aeroacoustic sources
- → Investigate comparability of test results from different facilities:
 - \neg Open closed test section
 - → Scaled models
 - → Real aircraft/train/...

- Dedicated experiments
- Systematic investigation on optimal mounting of microphones (Recessed, Kevlar, flush mounted)
- → Absolute level of resulting spectra (diagonal removal, deconvolution)
- → Consider the directivity of sound sources (not only in the transfer function!)
- Coherent sound sources: Determine the coherence lengths of typical aeroacoustic sound sources (implication on microphone array results)
- \neg Wind tunnel modifications
- → Assess data analysis software

Microphone array measurements in wind tunnels Open issues in MA wind-tunnel measurements: three examples

- → Assessment Re-number effect on aeroacoustic source radiation:
 - → Measurements setup: Array measurements in cryogenic flows
 - → Results
- → Investigate comparability of test results from different facilities: open/closed test section
 - → Measurements with a reference loudspeaker
 - → Measurements with an airframe noise model
- Note on data analysis: EWA Benchmark test to evaluate data analysis software

Microphone-Arrays in cryogenic environment Motivation: Assess Re-number dependency

→ Common practice: Acoustic measurement on small-scale models ...

real-flight conditions

scaled model in wind tunnel

- Conventional wind tunnel: real-flight Reynolds numbers not achieved
 A cryogenic and/or pressurized wind tunnel
- → Objective:
 - Provide cryogenic acoustic measurement technique for industrial applications
 - → Investigate Re number effects on aeroacoustic measurements

Microphone-Array for cryogenic flows Wind tunnel: KKK, Cryogenic wind tunnel cologne

- Cryogenic wind tunnel located at the DLR's Cologne Site (from DNW) "Göttingen type wind tunnel"
- → Closed test section $2.4 \text{ m} \times 2.4 \text{ m}$
- → Operational range:

```
300 \text{ K} > \text{T} > 100 \text{ K}
0.1 < \text{Ma} < 0.38
\text{Re}_{0.1\sqrt{S}} \le 9.5 \cdot 10^{6}
```


Microphone-Array for cryogenic flows Measurement Setup @ KKK

Microphone array

- → 144 microphones
- → Arranged in spiral arms

<u>Parameter</u>

- → Ma number: 0,125 0,25
- → Temperature: 300 K 100 K
- $7 \text{ Re}_{c} = 1.10^{6} 9.10^{6}$

DO-728 half model

- → Scale: 1: 9.24
- → 1/2 spanwidth: 1.44 m
- → Chord length: 0.338 m

DO-728 half model in landing configuration

Microphone-Array for cryogenic flows Setup – considerations due to cryogenic environment

- → Appropriate electronic components
- Durability and reliability of sensors and electronic equipment verified in previous study^[1]
- ✓ Contraction at lower temperatures (L = 1 m $dL_{290K-100K} \approx -3.7$ mm)
 - → Array fairing movably mounted
 - → Rigidly fixed at bottom center
 - → Data analysis:
 - Temperature, pressure, nitrogen gas etc.

[1] T. Ahlefeldt and L. Koop, AIAA-2009-3185

Microphone-Array for cryogenic flows Sensor Calibration – Temperature

in der Helmholtz-Gemeinschaft

Electret *cryo* microphone capsule
 -recessed behind a cone-

versus

 Bruel&Kjær ¼ -inch microphones for use in cryogenic environment -flush mounted-

- Average of the obtained transfer functions
- → Large deviations:
 - → high frequencies
 - → low temperatures

Slide 24 BeBeC 2012> L. Koop

Microphone-Array Results

DEUTSCHES ZENTRUM FÜR LUFT- UND RAUMFAHRT e.V. in der Helmholtz-Gemeinschaft

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 27 BeBeC 2012> L. Koop

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 28 BeBeC 2012> L. Koop

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 29 BeBeC 2012> L. Koop

Microphone-Array

@ cryogenic condition (DNW-KKK): Influence of Re-number

- → Local sound power spectra on nacelle
- → Clear effect of Re-number on radiated sound power

Microphone-Array for cryogenic flows

Future developments: Microphone array measurements in ETW

- → Objective: Aeracoustic measurements at flight Re-numbers
- → European Transonic Wind Tunnel (ETW) in Cologne
- Measurements at cryogenic conditions and total pressure of 4.5 bar
- → National research project
- → Partner: ETW, DLR, TU Berlin

Slide 31 BeBeC 2012> L. Koop

Microphone-Array for cryogenic flows

Future developments: Microphone array measurements in ETW

- → ETW specifications:
 - → Mach number: 0.15 1.35
 - → Total pressure: 1.15 bar 4.5 bar
 - → Temperature: 110 K 313 K

Max. Re-number: 50 million full-span models Max. Re-number: 90 million semi-span model

- ✓ Wind tunnel requirements:
 - Non intrusiveness
 - Full reliability over the complete tunnel operating range
 - Remotely controlled operation
 - Not affecting the flow-field near the model

Microphone-Array for cryogenic/pressurized flows Microphone array measurements in ETW: Main issues

Approach:

- → Concepts of sensors and electronic components
- → Cabling
- \rightarrow Remotely controlled data acquisition
- Calibration of sensors in cryogenic and pressurized environment
- → Pretests under real conditions PETW
- → Demonstration test in ETW

Microphone-Array for cryogenic/pressurized flows First demonstration at ETW

December 2011:

- \rightarrow Test array with 14 sensors
- Measurements on a R&T scaled halfmodel in high-lift configuration

Microphone-Array for cryogenic/pressurized flows First demonstration at ETW $a = 5^{\circ}$

$$p_{total} = 187 \text{ kPa} | T = 272 \text{ K}$$

St = 350 | f = 60.8 kHz

E = 0.20
-0.2
-0.2
-0.4 $Re = 5.2 \cdot 10^{6}$

$$p_{total} = 397 \text{ kPa} | T = 115 \text{ K}$$

St = 350 | f = 40.4 kHz

$$St = 350 | f = 40.4 \text{ kHz}$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$10^{1}$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$10^{1}$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$10^{1}$$

$$0.2$$

$$0.4$$

$$0.6$$

$$10^{1}$$

$$0.2$$

$$0.2$$

$$0.4$$

$$0.6$$

$$10^{1}$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$
$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.2$$

$$0.4$$

$$0.6$$

$$0.4$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.$$

Microphone-Array for cryogenic flows Summary

- First successful application of microphone arrays in cryogenic and pressurized environment
 - → Re-number variation at constant Ma-number
 - → Gives us the possibility to investigate Re-number effects in aeroacoustic measurements
- ✓ Clear effect of Re-number on radiated sound power
 - → Depends on: Ma-number, model configuration, source mechanism
 - Definition of acoustic **Re-number corrections** between WT-models and real flight condition **very challenging**

Microphone-Arrays in different test facilities Motivation

- Comparability between results from different test facilities (open, closed) and between wind tunnel and full scale aircraft (train, vehicle) not guaranteed
- Question: How far is it possible to compare beamforming results from different wind tunnels?
- Dedicated experiments: Similar experimental setup and aeroacoustic sound generation
 - 1. Measurements with a reference loudspeaker
 - 2. Measurements with an airframe noise model designed specifically for

Comparison measurements DLR reference source – Design

- → Electro dynamic ribbon loudspeaker: defined signal, repeatable
- \rightarrow Large frequency range (up to 65 kHz)
- → Two guiding flanges serve as an impedance adjustment
- → Ribbon diameter: 90mm; height 15 mm
- Omnidirectional sound radiation in centre plane

aerodynamic fairing

DLR reference source – Design and directivity

 $f = 63 \ kHz$

30

-60°

-75°

-105° -90° 0

-150

-135

Comparison measurements DLR reference source – integrated spectra

Comparison: closed vs. open test section

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Slide 40 BeBeC 2012> L. Koop

Comparison measurements DLR reference source – Signal-to-Noise-Ratio

Comparison measurements Airframe noise source – measurement setup

Aeroacoustic wind tunnel
 Braunschweig (AWB)

- Closed circuit wind tunnel, open test section with anechoic room
- → Nozzle exit: 1.2 m x 0.8 m
- Wind tunnel at Technical University Berlin
- Closed circuit wind tunnel, closed test section
- Test section dimensions: 1.4 m height, 2.0 m width
- \rightarrow Wind speed up to 35 m/s

Airframe noise source – source maps

 $\alpha_{os} = 12^{\circ}$

1 1 1

Airframe noise source – source maps

 $\alpha_{os} = 12^{\circ}$

Airframe noise source – integrated spectra

Comparison measurements Summary

- \neg DLR reference source provides:
 - \rightarrow Known sound field in a large frequency range (up to 70 kHz)
 - → Repeatable results with known amplitude and phase
 - \rightarrow Independent of flow condition
 - → Signal-to-noise-ratio and comparative measurements
 - → Assessment of wind tunnel with respect to aeroacoustic measurements
- → Comparisons shows:
 - \neg Level differences open/closed in the range ± 2dB;
 - → Low frequency range: larger deviations in CS (reverberant field)
 - → Higher frequency range: larger deviations in OS (coherence loss)
 - → Signal-to-noise-ratio higher in OP than in CS
 - → Limited frequency range in OS
 - → Accuracy depends on aerodynamic setup
 - ✓ Measurements have to planned and analysed by experts

Microphone array measurements in wind tunnels Summary

- → General:
 - State-of-the-art microphone array measurements in closed and open test section at DLR
 - → Accurate and reliable source localization
 - → Mobile measurement systems
 - \rightarrow Fast measurement technique with minor installation effects
- → High Re-number measurements:
 - → First successful application of microphone arrays in cryogenic and pressurized WT
 - → Clear influence of Re-number on aeroacoustic source strength
 - → Definition of acoustic Reynolds corrections between WT-models and real flight condition very challenging
- → Comparability between wind tunnels (and to real flight):
 - → Challenge: Accuracy depends on aerodynamic setup → Measurements have to planned and analysed by experts

Microphone array measurements in wind tunnels Challenges \rightarrow Open issues in MA wind-tunnel measurements

- → Assess Re-number dependency of aeroacoustic sources
- → Investigate comparability of test results from different facilities:
 - → Open closed test section
 - → Scaled models
 - → Real aircraft/train/...

Dedicated experiments

- Systematic investigation on optimal mounting of microphones (Recessed, Kevlar, flush mounted)
- → Absolute level of resulting spectra (diagonal removal, deconvolution)
- Consider the directivity of sound sources (not only in the transfer function!)
- Coherent sound sources: Determine the coherence lengths of typical aeroacoustic sound sources (implication on microphone array results)
- ✓ Wind tunnel modifications

Future progress in microphone array (wind tunnel) measurements can only be achieved by physical understanding and hardware oriented activities!

