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ABSTRACT
Conventional beamforming, among the several techniques that can be used for noise

source localization, has been widely used in complex problems, including aeroacoustics
applications. The sound generated by flow turbulence can present a distributed coher-
ent source region, which presents some challenges to the conventional beamforming
localization accuracy. The Generalized Inverse Beamforming (GIB) is a recent method
aiming at the identification of coherent or incoherent, distributed or compact, monopole
or multipole sources. This method is based on the microphone array cross-spectral eigen-
structure, resulting in a robust localization technique. In this work, the performance
of the GIB method is investigated for two simple cases in comparison to conventional
beamforming. The first test case, a simple monopole, illustrates the frequency range
accuracy, and the second test case, two monopoles in coherent radiation, illustrates the
different performance in coherent scenarios. Numerical investigation is used to define the
test array aperture and distance to the target region. In order to improve the generalized
inverse estimation on the coherent case, a new hybrid estimation is proposed. This
consists in creating a source mapping that is comparable to the conventional mapping
based on the generalized inverse mapping and the array Point Spread Function. The
offsetting between the hybrid mapping and the conventional mapping indicates the quality
of the generalized inverse estimation and the hybrid estimation points to the actual sources
overall strength.
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1 INTRODUCTION

Conventional beamforming is the current primary tool for noise source localization in several
fields of engineering. Its principle, sum & delay, is of easy understanding, and is a natural basis
for other techniques development. Countless methods have been proposed in recent years to
address more complex problems, as found, for example, in aeroacoustics applications.

One of the challenges in aeroacoustic problems, is that the source is distributed in coherent
regions, demanding a method with a high accuracy for this kind of scenario. Some examples of
methods can be found in [1], [2], and [3], using near-field acoustic holography, cross-spectrum
based azimuthal decomposition, and robust adaptive beamforming, respectively. These works
have some characteristics in common, for example, they were applied to a jet problem at low
Mach number, they use an approximately stationary condition for the testing, and they search
for the source location and type identification. All these methods still present a low resolution
in terms of source center localization.

The recently developed method, Generalized Inverse Beamforming [4] is a promissing
alternative to address the several challenges on complex problems. It aims at identifying
sources of compact or distributed nature, coherent or incoherent, with monopole or multipole
radiation patterns, simultaneously or not. This present a large range of possible applications,
and its concepts allows further developments on top of the original algorithm.

This work is a preliminary investigation in regards of two characteristics: The frequency
range for a monopole identification; and the localization accuracy for two compact sources
in coherent radiation. The results are presented for the generalized inverse beamforming and
the conventional beamforming [5]. In the end, a hybrid approach is proposed to illustrate
the correspondence between the generalized inverse beamforming and the conventional
beamforming. The hybrid estimation gives a secondary estimation that can be used to assess
the quality of the generalized inverse beamforming.

2 GENERALIZED INVERSE BEAMFORMING OVERVIEW

The generalized inverse beamforming uses the same array information as normally used in
conventional beamforming. The array cross-spectrum data can be arranged in matrix form,
leading to the cross-spectral matrix, R. The generalized inverse beamforming is based on the
eigen-structure of this response matrix. The decomposition can be described as below:

R = UΛU † , (1)

where U is the eigenvector matrix, Λ is the diagonal matrix containing the eigenvalues, and
U † is the complex conjugate transpose of U .

This approach, eigen-decomposition of the cross-spectral method was first derived by
Schmidt [6], leading to a range of new methods, such as, MUSIC methods (Multiple Signal
Classification). The general interpretation of the eigen-structure is simple, the number of
eigen-values represent the number of incoherent source distributions present in the array
response, and each eigen-vector, represent the respective response phase relationship. The
eigen-value is related to the source strength according to [7]. If the number of microphones
is bigger than the number of incoherent sources, the remaining eigen-values are related to the
incoherent noise structures.
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With the number of eigen-pairs that represents the source structures that are interesting for
identification, the response eigen-mode is defined as:

vi =
√

λiui , (2)

where vi is the eigenmode, λi and ui are the corresponding eigenvalue and eigenvector.
On the generalized inverse beamforming, the source localization problem is formulated as

finding the source vector, a, that solves the following source/transfer-path/receiver equation
using a least squares approach:

Aai = vi , (3)

where A is the transfer matrix, containing the radiation patterns from each target grid point
to every sensor position. The transfer matrix used in this work consist of monopole radiation
[8], but the extension to other radiation patterns, e.g. dipoles, is straightforward to obtain.

The generalized inverse, or pseudo-inverse, equations are used to calculate the source
vector, ai. When a larger number of target grid points than sensors is used, an underdetermined
system is obtained and the following equation can be used:

ai ≈ A†(AA†)−1vi . (4)

In the case of an overdetermined system, the following equation can be used:

ai ≈ (A†A)−1A†vi . (5)

Since the matrix AA† is generally ill-conditioned, a Tikhonov regularization is used [4] to
solve equation (4) or (5). This introduces an artificial diagonal term on this matrix, resulting in
the following equations for, respectively, the underdetermined and the overdetermined system:

ai ≈ A†(AA† + α2I)−1vi , (6)

ai ≈ (A†A+ α2I)−1A†vi , (7)

where α is the Tikhonov regularization factor, and I is the Identity matrix.
The Tikhonov regularization corresponds to the minimization of the following cost function:

J2 ≡ ||ai||2 + α−2||vi − Aai||2 , (8)

where ||.|| is the Euclidean norm.
In the original method presentation [4], the square of the regularization factor is chosen as a

fraction of the greatest eigenvalue of the matrix AA†, with suggested range from 0.1% to 5%.
The estimation is calculated by summing the source vector terms related to each co-

herent mode. However, the solution brought by equations (6) and (7) are least squares
approximations, and this approach is not accurate, since distributed sources will have their
contributions squared and then summed. To illustrate this characteristic, consider a unitary
source retrieved by two grid points, the source vector summation using a 2-norm approach is
(1/2)2 + (1/2)2 = 1/2, which results in an incorrect total. The overall strength of the source
vector is more accurately calculated using 1-norm, (1/2) + (1/2) = 1.
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For this reason, it is suggested to redefine the source detection problem as a minimization
of the following cost function [4]:

J1 ≡ |ai|+ α−2|vi − Aai|2 , (9)

where |.| is the 1-norm, representing the direct summation of the vector terms.
This has the advantage of a more accurate strength estimation for distributed sources. Since

no direct approach can be adopted to solve this minimization problem, the method proposed
by Susuki [4] searches the minimum of the cost function iteratively, truncating the source
vector on each iteration, discarding the irrelevant target grid points, and using the least squares
equations to recalculate the source vector. This process is applied until a predefined criteria
is fulfilled, for example, a minimum number of remaining terms in the source vector. A
simplified version of the algorithm can then be described as:

1. Calculate the initial source vector, a, using the generalized inverse equations (6) or (7);

2. Reorder and truncate (10%) the source vector, discarding the smallest terms;

3. Calculate a new source vector, using equations (6) or (7);

4. Repeat item 2 and 3 until a defined number of source terms is reached;

5. Apply Gaussian spatial filter on the final mappings.

The use of a spatial Gaussian filter on the final mappings has the mere purpose of improving
the mapping visualization, since the estimated strength remains unchanged.

3 MONOPOLE AT ORIGIN

This first example is used to illustrate the performance in identification in terms of frequency
range. But first, numerical tests are used to define the appropriate array configuration in terms
of aperture and distance to the target plane. The array configuration is a 6-arm spiral layout,
similar to the array used on [4], but with 30 microphones. The target grid points distribution
adopted in this work is similar to what is adopted in [4] for the numerical models tests, target
grid range is 6 wavelengths, and spacing is 1/4 of a wavelength. The generalized inverse
algorithm is stopped after the source vector reaches a minimum size of 21 terms. All results
are average of 5 estimations. Estimations used signal blocks with 1024 samples.

The numerical tests for a unitary strength 1kHz monopole source in free-field located at
the target grid center, varying the array aperture and distance to target, is shown in table 1.
The source signal included noisy according to the same strategy used by Susuki in [4], but
with a factor of 0.5 to have a less aggressive noise and comparable to what is found in the
experiments. The sampling frequency covered 10 wavelengths per block.

According to the results, good estimates (with error less than 10%) are found with ratio
between the distance to the aperture starting around on 1. It is clear from the results, that
estimates can be done as close as 1 wavelength, and in general, ratios above 1 generates
good estimates. For convenience, the ratio for the experiments was chosen to 1.25, and tests
done with spiral at 2.5m distance to the source, and aperture diameter of 2m. The chosen
microphones positioning and test configuration for the monopole testing can be observed in
figures 1a and 1b, respectively.
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Table 1: Estimations varying array distance and aperture.
Distance to Target in wavelengths

1 2 5 10 15 20 50

Aperture in wavelengths

1 1.05 1.00 0.96 0.96 0.96 0.96 0.96
2 1.18 1.02 0.98 0.96 0.96 0.95 0.95
4 1.69 1.36 1.00 0.99 0.97 0.96 0.96
6 1.77 1.55 0.99 0.99 0.98 0.97 0.96
8 1.83 1.51 1.26 0.99 0.99 0.98 0.96
10 1.82 1.60 1.40 1.00 0.99 0.98 0.96
12 1.74 1.72 1.49 1.02 1.00 0.99 0.96
14 1.80 1.71 1.47 1.09 1.01 0.99 0.97

(a) (b)

Figure 1: (a) Microphones positioning (circles) and target grid points (dots) [m]; (b)
Experimental layout: Microphone array; and compact source.

Figure 2: Estimations varying radiation frequency for a unitary monopole source.
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For the chosen configuration, numerical tests are performed varying the source frequency,
from 100Hz to 5kHz. The results are presented on figure 2.

Estimations above 100Hz are expected to have more accurate results, with error smaller
than 10%, according to the numerical simulations. This result already demonstrates the broad
frequency range of this method, the generalized inverse beamforming.

Three frequencies are chosen for the experiments. The source mappings for a unitary source
at 200Hz, 1kHz, and 5kHz, are presented, respectively, in figures, 3, 4, and 5, for conventional
beamforming and the generalized inverse beamforming methods. Acquisition uses 20.48kHz
sampling rate for the 200 and 1kHz tests, and 102.4kHz for the 5kHz test.

(a) (b)

Figure 3: Monopole with 200Hz radiation: (a) Conventional beamforming (b) Generalized
inverse beamforming (contour lines are in 10 dB range with 0.5 dB increment).

(a) (b)

Figure 4: Monopole with 1kHz radiation: (a) Conventional beamforming (b) Generalized
inverse beamforming (contour lines are in 10 dB range with 0.5 dB increment).

From the results, is observed that the conventional beamforming is not capable to locate
source at 200Hz, while the generalized inverse beamforming produces a mixed identification
with the reflections on the floor, considering that the source was located at approximately 1.6m
from the ground.
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(a) (b)

Figure 5: Monopole with 5kHz radiation: (a) Conventional beamforming (b) Generalized
inverse beamforming (contour lines are in 10 dB range with 0.5 dB increment).

For the 1kHz result, it is clear the advantage of the generalized inverse beamforming in
dynamic range, presenting the source location with 10dB range with around 1/2 wavelength
radius, compared to the conventional beamforming result of around 1 wavelength radius.

For the 5kHz source radiation case, both methods present a source center, but the higher
dynamic range for the generalized inverse beamforming is also clear. Both results indicate a
small offset for the source center, and this is attributed to the array positioning errors, with
estimated offset of about 30mm from the correct location, which is low compared to the test
involved dimensions.

The generalized inverse mapping present a spurious peak on the range of 10dB, and this
also can be explained by the array positioning error. The expected limitation to go beyond
5kHz is only the array positioning error.

The strength estimations for the conventional beamforming and the generalized inverse
beamforming are presented in table 2. The results for the conventional beamforming are
calculated at the maximum value on the mapping.

Table 2: Source strength estimations for three different frequencies.
Frequency Conventional beamforming Generalized inverse beamforming

200Hz 2.10 1.06
1kHz 1.11 0.92
5kHz 0.63 0.63

The generalized inverse beamforming present more accurate or similar estimations than
conventional beamforming for all three tested frequencies. This indicates that the generalized
inverse beamforming has a broader frequency range in respect to lower frequencies. For higher
frequencies, the indication is that estimations are affected by the same amount of error for both
methods. A better microphone positioning accuracy is expected to enhance results for higher
frequencies.
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4 TWO MONOPOLES IN COHERENT RADIATION

Now, to illustrate the generalized inverse superior performance in coherent scenarios, a simple
test using two compact sources separated by two wavelengths is used. The sources are set to
radiate in-phase at 1kHz. The array configuration, aperture, distance to target plane, target
grid range, and target grid spacing, are all the same as on previous example.

The mappings for the conventional beamforming and generalized inverse beamforming are
presented in figure 6.

(a) (b)

Figure 6: Two monopoles in-phase with 1kHz radiation: (a) Conventional beamforming (b)
Generalized inverse beamforming (contour lines are in 10 dB range with 0.5 dB
increment).

Is clear from the results that the generalized inverse beamforming is capable to identify
two monopole sources, and that the conventional beamforming does not present a clear
identification. The number of terms on the source vector is still 21 terms, and this leads to a
reduced radius than 1/2 wavelength for the 10dB range, since the 21 terms are now distributed
in two sources. The conventional beamforming asymmetric result could be related to the
array distribution, with peak closer to the region with more microphones. The estimations are
presented on table 3. The conventional beamforming result is obtained at the mapping peak.

Table 3: Strength estimations for two monopoles in-phase example.
Frequency Conventional beamforming Generalized inverse beamforming

1kHz 1.26 1.41

The result for the generalized inverse beamforming is the best approximation to the expected
response, q = 2. But still not accurate enough, and an improved methodology is required.
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5 HYBRID ESTIMATION

Conventional beamforming is based on the delay & and sum principle, and can be stated as
shown in the equation below:

P = w†Rw , (10)

where w is the vector with the weighting factors (or delays).
The estimation retrieved by conventional beamforming is equivalent to a directional

microphone with the same dynamic characteristics of the Point Spread Function of the array.
The Point Spread Function can be described by the equation below:

PSF = |w†wo|2 , (11)

where wo is the weighting vector related to the point of interest.
The conventional beamforming is a robust estimation technique, with signal to noise ratio

improved according to the number of microphones on the array. The hybrid estimation is based
in the conversion of the generalized inverse mapping, using the array point spread function,
to an equivalent mapping. This process takes advantage of the more accurate source mapping
from the generalized inverse method, and the less sensitive to noise conventional mapping.
The conversion is described as:

Po = |aiPSF 1/2|2 , (12)

where Po is the power at a particular target grid point.
On figure 7 is shown the original generalized inverse beamforming from the two monopoles

in coherent radiation example, and the array Point Spread Function for the grid center.

(a)
x [m]

y
 [
m

]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b)

Figure 7: (a) Two monopoles in-phase with 1kHz radiation, generalized inverse beamforming
(b) Array Point Spread Function for the grid center (contour lines are in 10 dB range
with 0.5 dB increment).

This converted mapping, or hybrid mapping, is then compared to the conventional mapping,
and the averaged strength offsetting is used to estimate the difference between the two
mappings.

In figure 8, the conventional mapping for the two monopoles case and the hybrid mapping
is presented.
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(a) (b)

Figure 8: Two monopoles in-phase with 1kHz radiation: (a) Conventional beamforming (b)
Hybrid mapping based on the generalized inverse beamforming (contour lines are
in 10 dB range with 0.5 dB increment).

The similarity between the two mappings is clear from the results. However, since the
generalized inverse mapping is a distributed mapping, there is an expected difference from
the hybrid mapping to the conventional mapping. This is caused by the point spread function
being applied to a distributed source mapping, and the sum over this results is lower than the
actual source strength multiplied by the point spread function at the source center location. Or,
in other words, if the generalized inverse mapping would be a concentrated source mapping
instead of the distributed, the hybrid mapping would be equal to the conventional mapping.

The offsetting between the conventional mapping and the hybrid mapping, when applied
to the generalized inverse results, lead to a mapping that is the closest approximation to
the original conventional mapping. This offsetting when added to the generalized inverse
results, includes the error due to the distributed nature of the generalized inverse beamforming.
Causing the hybrid estimation to be an overestimation of the source mapping. The proposal
here is that the hybrid offsetting is a limit of probable estimation, and the best approximation
would be an intermediate value between the original generalized inverse estimation and the
value with added offsetting. On table 4, the generalized inverse estimation, hybrid offsetting
and the hybrid estimation estimation, are presented.

Table 4: Generalized inverse and hybrid estimation for the two monopoles example.
Generalized inverse beamforming Offsetting [%] Hybrid estimation

1.41 48 2.08

Even considering that the hybrid estimation is closer to the combined source strength,
q = 2, it has inherent error due to the distributed nature of the generalized inverse mapping.
Another aspect is that the conventional beamforming estimation also has some errors related
to the presence of noise on the measurements. This two aspects, explains the remaining gap
from the hybrid estimation to the actual combined source strength. Taking these aspects into
consideration, the hybrid offsetting certainly indicates the quality of the generalized inverse
beamforming estimation by comparison to the conventional beamforming, and certainly points
to the range of a more accurate estimation.
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6 CONCLUSIONS

The investigations used a 6-arm spiral array configuration, and two cases of monopole sources:
One monopole at target grid center; and two monopoles in coherent radiation. The first test
case is used to illustrate the array characteristics, array aperture and distance to target grid,
influence on estimation, and also the frequency range accuracy in estimation and mapping.

Some characteristics can be pointed out from the investigation performed. First, that using
the 6-arm spiral configuration, a ratio about one or higher, between the distance from the
array to the source target plane, and the array aperture, leads to an accurate monopole source
strength estimation. Even with the array as close as one wavelength from the target plane, the
generalized inverse method is capable to give an accurate estimation.

The investigation performed also demonstrated the superior performance on frequency
range for localization of a compact source, with a broader low frequency range in respect
to mapping. This is an important advantage of the generalized inverse method since one of the
drawbacks on the conventional beamforming is the restricted low frequency accuracy.

The second test example, two monopoles is coherent radiation, is used to illustrate the
higher accuracy on coherent scenarios in locating source centers compared to the conventional
beamforming. The higher dynamic range on the generalized inverse method allowed the
individual source center detection while the conventional beamforming is not able to locate
the individual source centers.

Despite the estimation using the generalized inverse method being already more accurate
than the conventional beamforming on the presented case, a new method is applied to the
generalized inverse result, and a hybrid estimation between the conventional beamforming
method and the generalized inverse method, presented. This hybrid estimation points to the
region of a more accurate estimation, and indicates the quality of the original generalized
inverse method’s result.

These findings confirm the potential of the generalized inverse beamforming method to be
used in more complex problems, with advantages such as: broader frequency range; lower
array distance limit to region of interest, with respective lower array size; higher spatial
accuracy in coherent cases; accurate source strength estimation; and the possibility to apply a
less sensitive to noise estimation, the hybrid estimation.
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